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Geometrical orbits in the power spectra of waves

Stephen C. Creagh* and Peter Dimon
Center for Chaos and Turbulence Studies, The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark

~Received 25 November 1996!

We investigate the relationship between the power spectrum of a wave field and that of a spatially uncor-
related source exciting it. Temporal correlations between values of the field at different positions are also
examined. It is found that interference effects can significantly alter the structure of the power spectrum,
leading to oscillations in it, even when the power spectrum of the source is a smooth function of frequency. We
derive a semiclassical approximation in which these oscillations are related to orbits of the geometrical limit of
the wave system. We also derive a trace formula that approximates a spatial average of the wave power
spectrum as a sum over periodic orbits. These calculations explain the structure of a measured power spectrum
of the fluctuating height of a fluid surface, generated by the circular hydraulic jump, which provided the
motivation for the study.@S1063-651X~97!04505-4#

PACS number~s!: 47.35.1i, 03.65.Sq, 05.40.1j, 02.50.2r
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I. INTRODUCTION

Semiclassical approximations to quantum mechanics h
excited a lot of activity in recent years, especially in relati
to systems for which the classical dynamics is chaotic@1#.
While it is natural for historical reasons to apply semiclas
cal techniques to quantum mechanics, there is no reason
they cannot be used with equal enthusiasm for other w
systems, such as electromagnetic cavities or acoustic ex
tion of solid objects. Indeed, even though theoretical stud
have tended to concentrate on quantum mechanics, muc
the recent experimental work in the field has been with th
other wave systems@2–6#, so classical wave systems wou
seem to provide a rich arena for experimental application
the techniques. There has been a tendency to view t
experiments as analogs to quantum mechanical systems
therefore to perform measurements that are natural in
context. The semiclassical approximation of diverse class
wave systems is interesting in its own right, however, a
when viewed independently, alternative measurements
be natural that have no analog in quantum mechanics.

An example of such a measurement is one that forms
basis for the calculations in this paper — the characteriza
of a stochastic variable by its power spectrum. While pow
spectra are sometimes used in quantum mechanics to ex
information about eigenstates, they are used as a tool in
analysis of stochastic systems with a fundamentally differ
underlying philosophy, the interest in the latter case of
focusing on broad scaling properties rather than in ident
ing peaks at precise frequencies. If the stochastic varia
examined has a wave character, interference effects can
a dramatic impact. In this paper we study fluctuations a
function of frequency that are observed in such power sp
tra, and relate them to trajectories in the geometrical limit
the wave system.

The analysis presented here was inspired by the obse
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tion of such effects in a particular experiment@7#, described
in Sec. II. There a time series was measured of the heigh
flowing water outside a circular hydraulic jump, from whic
a power spectrum was computed. This revealed a stro
regular oscillation in frequency, whose period depended
the point where the measurement was taken. It was fo
that all the essential features of this power spectrum could
explained with a simple model — that of a linearized wa
equation describing surface oscillations, driven by a no
source term modeling the effect of the forcing of the surfa
oscillations by turbulence generated at the jump. Semicla
cal analysis relates the power spectrum to ‘‘classical’’ orb
in the geometrical limit, and the oscillation with frequenc
can be explained with a single orbit deduced from the geo
etry of the experiment.

This analysis depends little on the details of the particu
system, and is developed quite generally. We mention
Sec. II the possibility of observing these effects in blackbo
radiation, and in acoustic emissions in solids, for examp
We assume a wave system driven by a stochastic sourc
Sec. III the power spectrum of the wave field is related
that of the source through an integral of the Green’s funct
over its source variable, under the assumption that the so
is uncorrelated at length scales of the order of a wavelen
There is a similar calculation for correlation function
Through this integral over the Green’s function, interferen
effects appear in the wave field’s power spectrum. These
best understood through an approximation for the Gree
function as a sum over geometrical orbits. We show in S
IV that fluctuations in the power spectrum at a given po
can be expressed as a sum over geometrical orbits that b
and end at that point, and whose past passes through
region of excitation of the wave field. These fluctuations a
superimposed on a smooth contribution that is reminiscen
the Thomas-Fermi density of states in quantum mechan
We also show that correlations between two different poi
can be approximated by a sum over trajectories that con
those two points. Correlations between two different poi
have no smooth background. We estimate the expression
the power spectrum in the particular case of billiard syste
— homogeneous and isotropic wave equations with inter
5551 © 1997 The American Physical Society
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5552 55STEPHEN C. CREAGH AND PETER DIMON
ence effects arising from reflections at surfaces where bou
ary conditions are imposed. The smooth part repres
modification of the source power spectrum by a factor tha
an algebraic function of frequency, and oscillations are fou
to have amplitudes that decay exponentially with freque
due to dissipative damping of the wave. If the wave field
measured outside of the region of excitation, however, t
even the smooth part has an exponential dependence on
quency.

More elegant semiclassical formulas are obtained by
eraging the power spectrum over space. Then the approx
tion turns into a sum over orbits that are periodic in pha
space, and this is calculated in Sec. V. The formula deri
there is very much like the Gutzwiller trace formula@1#,
except that each periodic orbit term carries an extra we
determined by the strength of the source power spect
over its length. Finally, in Sec. VI we apply the results d
rived here to understanding quantitatively the main featu
of the power spectrum measured in the hydraulic jump
periment. We relegate many details of the semiclassical
culation to the Appendixes. In Appendix A, we give a d
tailed description of the semiclassical calculation for t
Green’s function — only the main points are discussed in
text. The contributions to the Green’s function are damp
due to dissipation and in Appendix B we give a simple rec
for calculating the damping factors without having to calc
late trajectories in complex phase space. In Appendix C
use the detailed specification of the Green’s function d
cussed in Appendix A to simplify the calculation of th
smooth part of the power spectrum. We do the same th
for the oscillating part in Appendix D.

II. MOTIVATION

We begin with a brief discussion of the experimen
measurements that provoked the analysis presented in
paper — a complete description of the experiment, wi
more detailed analysis, can be found in Ref.@7#.

In the experiment, measurements were taken of the fl
height at a point outside a circular hydraulic jump. This jum
appears when fluid flows radially outwards from a point
injection at the center of a circular plate. At a certain radi
depending on the flux, the fluid height increases abruptly
the radial velocity falls. The flow appears to be stationary
sufficiently small flow rates, but when the flux is larg
enough the jump starts to fluctuate and waves appear on
surface. This onset of irregular behavior is very interesting
a simple and controllable example of a hydrodynamic ins
bility, and was studied experimentally for this reason.
natural first step in the analysis is to compute a power sp
trum from a time series of the height of the fluid at a giv
point.

When this was done, the power spectrum was see
exhibit a marked and regular oscillation with frequency. W
show in Fig. 1 an example in which the boundary conditio
are fixed by placing a wall at the edge of the plate. It is fou
that the strength of the oscillation effects depends on
manner in which surface waves are reflected from the ed
and placing a wall there is the cleanest way to control
reflections. In the original experiment, reflections from t
edge of the plate produced similar, but less controllable
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fects. In general one finds that the spacing between pe
increases steadily with frequency, roughly asDv;v1/3, and
it is further observed that the spacing increases when
point of measurement is brought closer to the edge of
plate. This structure can completely dominate the pow
spectrum, and a full understanding is necessary before
analysis of the underlying phenomena can be attempted

We can explain the main features of the power spectr
with a simple model. We assume that the surface waves
of small enough amplitude that their propagation is govern
by a linear wave equation. We then model the driving of t
surface waves by the irregular jump by including a no
source term in this wave equation. From here it is possible
see that the oscillations arise from interference betw
waves that travel directly from the jump to the point of me
surement, and waves that pass throught the point of meas
ment, are reflected, and return. We present a discussio
the next section that is valid for any linear wave equat
driven by noise. Following the general analysis, we will r
turn to the experiment in Sec. VI and show how the mo
quantitatively explains the main features observed.

Among other possible instances where structures like
might appear, perhaps the most obvious is in the ther
fluctuations of the electromagnetic field of a blackbody ca
ity. The natural frequency range in which to observe t
effect is that of microwaves. In this case, the source excit
the wave would be currents on the surface of the cavity. O
might then see in the power spectrum a smooth backgro
coming from the Planck distribution, with interferenc
induced fluctuations superimposed upon it. Another possi
ity is the phenomenon of acoustic emission, where the
chastic excitation of sound waves in solids arises through
random changes of domain walls@8#. If there are regimes
where the domain walls are of small enough length sc
that source is spatially uncorrelated at length scales of
acoustic wavelength~as demanded by the coming analysi!,
and if the jumps are close enough together in time, then
effect will be of acoustic noise with a broadband spectru
Other examples where interference effects might be obse
are water waves on longer lengths scales than are prese
the hydraulic jump experiment, such as wind-genera
ocean waves, seismic waves produced by earthquake

FIG. 1. A power spectrum from the hydraulic jump experime
In this case the boundary conditions were fixed by placing a refl
tor near the edge of the plate.
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55 5553GEOMETRICAL ORBITS IN THE POWER SPECTRA OF WAVES
other sources, and production of electromagnetic radia
by the currents generated in a turbulent plasma.

III. A GENERAL MODEL

In this section we examine a simple model inspired by
hydraulic jump experiment — that of a fieldu(x,t) whose
evolution in time is governed by a linear wave equati
driven by noise. We will concentrate on the following fo
mulation of the problem:

LS ]

]t
,¹,xDu~x,t !5h~x,t !, ~1!

where the linear wave operatorL(]/]t,¹,x) is homogeneous
in time and of ordern, defined on ad-dimensional configu-
ration space. The source termh(x,t) is taken from some
ensemble of random functions whose properties will be d
cussed in more detail later. We will specify more prec
conditions on the wave equation in the next section, but
the moment we will just say that it should have solutions t
are predominantly oscillatory, with some small degree of d
sipation present.

The idea here is thath(x,t) might represent some phys
cal process where activity occurs on all possible time sca
possibly with some interesting scaling behavior. Let us s
pose that one was interested in measuring the power s
trum of this process, and that it was accessible not dire
but through the wave fieldu(x,t) excited by it. The question
then is whether the power spectrum ofu(x,t) differs signifi-
cantly from that ofh(x,t). We will find that the answer is, in
many cases, yes. Becauseu(x,t) has a wave character, w
will find that interference effects can significantly alter t
power spectrum. If, for example, the power spectrum
h(x,t) decays smoothly to 0~asv2a, for example! not only
will the power spectrum ofu(x,t) decay with a somewha
different rate on average, but significant fluctuations will
superimposed.

It should be pointed out that in many physical systems
interest, the wave equation will not be in the form of a part
differential equation as in Eq.~1! — it might be an integral
equation or, as in the case of surface waves in a liquid, h
undetermined boundary conditions as an integral part of
time evolution. Even if in the form of a partial differentia
equation~PDE!, the wave equation might not, as implied b
the notation used so far, be a scalar wave equation — so
waves in solids or electromagnetic waves are governed
vector wave equations, for example. We assume a scalar
tial differential equation because we can then, in the se
classical analysis of the next section, carry over stand
formulas from the WKB approximation in quantum mecha
ics with minimal modification or awkwardness of notatio
When more general wave systems are to be considered
basic structure of the results will be the same.

A. Calculation of the power spectrum

Let us first relate the power spectrum ofu(x,t) to that of
h(x,t). The autocorrelation function of the source is a
sumed to be of the form

^h~x,t !h~x8,t8!&5Ch~x,x8,t2t8! ~2!
n
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and the Fourier transform of this gives

^h̃~x,v!h̃* ~x8,v8!&52pC̃h~x,x8,v!d~v2v8!. ~3!

There are similar expressions for the autocorrelation func
of the responseu(x,t).

To connect the autocorrelation functions we write t
wave equation in the frequency domain:

L~ iv,¹,x!ũ~x,v!5h̃~x,v!, ~4!

and define its Green’s functionG(x,x8,v) in the usual man-
ner,

L~ iv,¹,x!G~x,x8,v!5d~x2x8!. ~5!

As an abstract operator, we will sometimes denote the w
operator at the left byL̂(v). The Green’s function is formed
by taking matrix elements of the related opera
Ĝ(v)5L̂(v)21.

Using the Green’s function to solve for the response a
averaging over the ensemble of source functions, we get
following relationship between autocorrelation functions:

C̃u~x1 ,x2 ,v!5E dx18E dx28 G~x1 ,x18 ,v!G* ~x2 ,x28 ,v!

3C̃h~x18 ,x28 ,v!. ~6!

We will now commit ourselves to the assumption that t
spatial correlation length of the source is much smaller th
typical wavelengths observed in the wave system. This
lows us to make the replacement

C̃h~x18 ,x28 ,v!→Ph~x18 ,v!d~x182x28! ~7!

in Eq. ~6!, where we will refer toPh(x,v) as the power
spectrum of the source. Then,

C̃u~x1 ,x2 ,v!5E dx8G~x1 ,x8,v!G* ~x2 ,x8,v!Ph~x8,v!.

~8!

The most important case is whenx15x2 and this gives us an
expression forPu(x,v)5C̃u(x,x,v), which we will refer to
as the power spectrum of the wave system:

Pu~x,v!5E dx8uG~x,x8,v!u2Ph~x8,v!. ~9!

Notice that the normalizations of the source and wave po
spectra are defined differently. These expressions for the
tocorrelation function and power spectrum will form the b
sis for the semiclassical approximation in the following se
tion. Through them, interference effects in the Gree
function become manifest in the power spectrum of
wave.

To accentuate the structure of the basic equations, le
consider for the moment the case wherePh(x,v)5Ph(v) is
position independent. Then Eq.~8! can be written simply in
bra-ket notation as follows:

C̃u~x1 ,x2 ,v!5Ph~v!^x1uĜ~v!Ĝ†~v!ux2&. ~10!
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5554 55STEPHEN C. CREAGH AND PETER DIMON
So in this case the modulation factor forC̃(x1 ,x2 ,v) is just
a matrix element of the operatorĜ(v)Ĝ†(v) and the par-
ticular case of the power spectrum corresponds to diag
matrix elements of this operator. In the general case
position-dependentPh(x,v), one has to sandwich anothe
operator betweenĜ(v) andĜ†(v) to represent the modifi
cation of the measuredx8 by the factorPh(x8,v).

IV. SEMICLASSICAL ANALYSIS

In quantum mechanics, there is a well understood
proximation to the Green’s function in terms of trajectori
of the corresponding classical system@1#. We will use the
analogous approximation forG(x,x8,v) to interpret the in-
terference effects arising in the power spectrum ofu(x,t).
The most important features can be understood without
erence to many of the technical details arising in the ca
lation. We will therefore present the calculation along tw
tracks. In the main text we will give the basic structure of t
approximations, writing down WKB approximations, not a
ways specifying in detail amplitudes and phase shifts,
presenting enough detail that the basic qualitative structu
clear. We also give a detailed account of the manipulation
amplitudes and phase shifts, but this is relegated to the
pendixes as the calculation proceeds.

A. The starting approximation

Approximation of the Green’s function in terms of orbi
can be achieved by direct comparison with the analog
quantum mechanical calculation. This is described in de
in Appendix A. We work under the assumption that t
length scales over which the wave medium changes
much larger than typical wavelengths. Under these con
tions, an eikonal ansatzA(x)exp@iS(x)# is justified as a local
approximation to the wave field. Insertion of the eikonal a
satz into the wave equation will yield a local dispersion
lation v5n(x,k), where k5¹S is the local wave vector
The functionn(x,k) will then serve as a Hamiltonian for th
‘‘classical limit’’ of the wave equation — generating traje
tories or ‘‘rays’’ @x(t),k(t)# in the 2d-dimensional phase
space for which (x,k) are canonical coordinates. Often the
will be no explicit position dependence in the dispersion
lation but interesting dynamics will occur at surfaces wh
boundary conditions are imposed and waves are reflecte
in the billiard problems of quantum mechanics.

We will assume that the operatorL̂(v) is approximately
Hermitean — so the wave equation will have truly waveli
solutions. A small non-Hermitean part should be presen
represent the effects of dissipation, but we will always tr
this perturbatively. If there is a small anti-Hermitean comp
nent toL̂(v), then the dispersion relation will have a sma
imaginary part, leading in turn to rays@x(t),k(t)# that are
slightly complex.

The approximation for the Green’s function, valid whe
the dispersion relation changes over spatial scales m
larger than a wavelength, is of the form

G~x,x8,v!'(
a

Aa~x,x8,v!eiSa~x,x8,v!, ~11!
al
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wherea labels orbits going fromx8 to x at the specified
value ofv5n(x,k), andSa(x,x8,v)5*x8

x k dx, taken along
the orbit. In this preliminary analysis we will suppres
Maslov indices~by incorporating them into the amplitude!
and not specifyAa(x,x8,v) any further other than to say tha
it is a function that changes over spatial scales much lon
than a wavelength — a complete description is given in Ap
pendix A. In a physical problem, dissipation will be prese
and the trajectories will have small imaginary componen
We denote the real and imaginary parts of the action by

S5R1 iK , ~12!

with K small and positive. The oscillatory part is the mo
important and can be treated at lowest order by ignoring
anti-Hermitean part of the wave operator and getting r
trajectories from the corresponding real dispersion relati
Then the decay can be added in by calculating the imagin
part of the action as a perturbation of this real orbit —
explicit formula is given in Appendix B. This decay is i
turn important for the convergence of the integrations to f
low.

We are now ready to start calculating the correlation fu
tion. Under the approximation above, Eq.~8! becomes

C̃~x1 ,x2 ,v!5(
ab

E dx8Aa~x1 ,x8,v!Ab* ~x2 ,x8,v!

3Ph~x8,v!eiSa~x1 ,x8,v!2 iSb* ~x2 ,x8,v!,

~13!

wherea andb label the trajectories fromx8 to x1 and x2,
respectively, illustrated schematically in Fig. 2~a!. Under
typical semiclassical conditions, this integral will be dom
nated by the contributions from regions where the phas
stationary. In principle, significant contributions can al
arise from boundaries of the integration where the geom
of the system leads to a cutoff of trajectories@9#. ~Such ef-
fects might be observed in the hydraulic jump experime
for example@7#.! In this paper we concentrate on the dom
nant contributions of stationary phase points. We assume
the length scales over whichPh(x,v) varies are long, so tha
it does not enter into the stationary phase condition. Gen

FIG. 2. Before stationary phase integration of Eq.~13!, pairs of
distinct orbitsa and b contribute to the correlation function, a
illustrated schematically in~a!. A contribution with stationary phase
is obtained when the initial conditions of these orbits coincide, g
ing a sum over the histories of single orbitsg shown in~b!.
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55 5555GEOMETRICAL ORBITS IN THE POWER SPECTRA OF WAVES
ating function conditions exist for the action integrals stat
that ]R(x,x8,v)/]x5k and ]R(x,x8,v)/]x852k8, where
k8 andk are respectively the initial and final wave vectors
the orbit~in real dynamics! @1#, and as a result the stationa
phase condition for the integral above can be written~ignor-
ing the imaginary part of the action! as

05
]Ra~x1 ,x8,v!

]x8
2

]Rb~x2 ,x8,v!

]x8

52k18~x1 ,x8,v!1k28~x2 ,x8,v!. ~14!

Therefore the initial wave vectors of the orbits should be
same, which simply means that the pointsx1 andx2 lie on
different parts of the same trajectory, as illustrated in F
2~b!. Thus, to find the stationary phase points, we must fi
find the trajectories going fromx1 to x2 or vice versa— then
the stationary phase points consist of all those positionsx8
on the ‘‘past’’ of that trajectory, preceding bothx1 andx2.

It is possible to imagine circumstances wherePh(x,v)
would have short length scales such as, for example, b
restricted to a boundary~as for blackbody radiation in a cav
ity, and possibly the hydraulic jump experiment!. If the
source is restricted to a surface of codimension 1, the an
sis is not altered considerably. We apply the stationary ph
condition only along directions parallel to this surface, im
plying that thosed21 components of momentum matc
Since the trajectories should also have the same freque
we are still essentially restricted to pairs of trajectories w
matching initial conditions. Therefore the orbits contributi
to the correlation function are the same as before, but
integral overx8 is restricted to the boundary.

We should point out that the products of Green’s fun
tions that we encounter here, and the subsequent orbit s
developed in the following calculation, bear a strong form
resemblance to certain quantum mechanical calculations
a semiclassical analysis of systems with small scattering
ters or sharp corners in boundaries, diffraction effects
included by concatenating separate Green’s functions an
cluding ‘‘diffraction coefficients’’ for each scattering poin
@9#. When computing traces the resulting integration of pro
ucts of Green’s functions is similar to that presented here
the analysis of conductance fluctuations of two-dimensio
electron gasses products of Green’s functions are also
countered@10# leading likewise to simple orbit sums of th
type presented here.

B. The smooth contribution

Before proceeding further with the approximation of E
~13! for general orbits, we single out a special contributi
that arises in the approximation of the power spectrum, w
x15x2. Then it is possible for the orbitsa andb in Eq. ~13!
to be exactly the same orbit~with the same length as well a
the same initial conditions!. In this case the actions canc
and there is no phase variation asx8 is varied. Then the
integral must be computed as a fulld-dimensional integral,
giving the following smooth contribution to the power spe
trum:
f
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Pu
sm~x,v!5(

a
E dx8uAa~x,x8,v!u2e22Ka~x,x8,v!Ph~x8,v!.

~15!

Superimposed upon this nonoscillating function ofx will be
oscillating contributions from cross termsaÞb, to be calcu-
lated later. This contribution plays a role analogous to tha
the Thomas-Fermi term in the trace formula for the dens
of states. There is an important difference however. In
formula above, it is assumed that the integral is domina
by orbits that are longer than a few wavelengths — that
contribution from shorter orbits, for which the semiclassic
approximation is not valid andAa(x,x8,v) diverges, is neg-
ligible. By contrast, it is precisely the short orbit contributio
that is responsible for the Thomas-Fermi density of sta
@1#. Besides the differences in origin, though, the contrib
tions are structurally similar. This will be especially evide
when we discuss traces in Sec. V, where the smooth co
bution will be shown to consist of an integral over a ma
fold of fixed frequency in phase space, with the same m
sure that occurs in the Thomas-Fermi density of states.

In its present form, Eq.~15! is impractical because th
amplitudeAa(x,x8,v) is a complicated function of its argu
ments. We show in Appendix C, however, that the amplitu
is proportional to a Jacobian that transforms the integral o
dx8 into an integral over phase space coordinates tha
much simpler. This new form is

Pu
sm~x0 ,v0!5

1

~2p!d21E dx8dk8dtd~v2v0!

3d„x~ t !2x0…uJJ8ue22K~x8,k8,t !Ph~x8,v!,

~16!

where, for the moment, the symbolsx andv are reserved for
variables in the integration, andx0 andv0 are the particular
values at which the power spectrum is to be evaluated.
integral is over the (2d11)-dimensional space of all pos
sible trajectories, parametrized by the initial conditio
(x8,k8) and the timet. Thed functions restrict the integral to
the submanifold where the frequency of the trajectory isv0
and the final position isx0. The arguments of the imaginar
partK of the action function were rewritten to coincide wit
the integration variables, but it still just comes from an in
gral of k•dx along the orbit~the subscripta is dropped
because there is now a unique trajectory for each argume!.

The factorsJ8 and J are Jacobians to be evaluated, r
spectively, at the initial and final points of the trajectory —
they express the relationshipdt/dt between increments in
time t and in another timelike coordinatet. It can be calcu-
lated as follows. The ‘‘classical’’ limit of the wave operato
L̂(v) yields a dispersion functionD(x,k,v) and t is the
time coordinate when this is used as a Hamiltonian. A
point (x,k) in phase space, the Jacobian can be calcula
from J52@]D(x,k,v)/]v#21. The coordinatet and dis-
persion functionD(x,k,v) are central to the discussion in
troducing the Green’s-function approximation in Append
A, and the reader should look there for a more thorou
discussion.
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One can also parametrize the trajectories by the fi
phase space coordinates (x,k) rather than the initial coordi-
nates (x8,k8), and because time evolution in phase spac
symplectic, the Jacobian for this transformation is 1. Follo
ing this coordinate transformation, the integral overx anni-
hilates thed function in that variable, giving

Pu
sm~x,v!5

1

~2p!d21E dk d„n~x,k!2v…uJu

3E
2`

0

dt8uJ8ue22K~x,k,t8!Ph„x8~ t8!,v….

~17!

We have dropped the subscript 0 on the arguments of
power spectrum. We have also redefined the time coordi
to t8 so that it varies from2` in the infinite past of the
trajectory to 0 when the trajectory reachesx. This is now
explicitly an integral over all trajectories passing throughx
with frequency v — through the measure
*dkd„n(x,k)2v… — with each trajectory contributing a
integral over its past time coordinatet8.

We can absorb the factoruJ8u into the integration measur
by writing

dt85dt8uJ8u. ~18!

While this has the disadvantage that it obscures the m
physical variablet8, it is neater, and we will use it from now
on. ~We will still write time-dependent arguments in terms
t8 rather thant8.! One can also simplify thed function by
writing it in terms of the dispersion function according
uJud„n(x,k)2v…5d„D(x,k,v)…. Let us also introduce a
special symbol for the integral overt8. For any phase spac
point (x,k) we define

Q~x,k,v!5E
2`

0

dt8e22K~x,k,t8!Ph„x8~ t8!,v…, ~19!

which is an integral over the past of the trajectory goi
through (x,k) at t850. This quantity will turn out to be
important also for the oscillating contributions. If the excit
tion is along a boundary rather than in the bulk, there is
analogous discrete sum over past intersections of the tra
tory with the boundary. The smooth contribution can now
written more compactly as

Pu
sm~x,v!5

1

~2p!d21E dkd„D~x,k,v!…Q~x,k,v!. ~20!

Let us calculate the smooth term in a simple special ca
We consider a system that is spatially homogeneous and
tropic, so the dispersion relationv(k) is a function of uku
only. We assume that boundary conditions are respons
for any interference effects, so rays are reflected at bou
aries but otherwise travel in straight lines, as in quant
billiards. The results below also work for open systems, a
give a complete picture in that case because no interfere
effects are present. We assume that the source is hom
neous, so its power spectrum can be written asPh(v). For
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an orbit of timet, the physical lengthl is related to it by
l5vt5(]v/]k)t and we can write, for the imaginary part o
the action,

K5a~v!l5a~v!
]v

]k
t, ~21!

where we denotea(v)5Im@k(v)#. We can now explicitly
integrate Eq.~19! for Q, giving the following function of
v alone:

Q~v!5
Ph~v!

a~v!U~v!
. ~22!

HereU(v)5uJu21]v/]k is a rescaling of the group velocit
corresponding to a variable changet→t. The remaining in-
tegral overk in Eq. ~20! can easily be computed in pola
coordinates to give

Pu
sm~v!5

Vd

~2p!d21

k~v!d21

a~v!U~v!2
Ph~v!, ~23!

where Vd is the integral over angular coordinates. If w
further assume a power-law dispersion relationv;ka, with
a;vb and]D/]v;vn21, then

Pu
sm~v!;vdPh~v!, ~24!

with d5(d11)/a22n2b. That is, there is an algebrai
correction to the power spectrum. This is expected to
typical of cases where the power spectrum of the wave fi
is measured in the region of excitation. The result would
quite different if the field were excited in one place a
measured in another — as is the case in the hydraulic ju
experiment. ThenQ(v) receives a contribution only from
the part of a trajectory passing through the excitation reg
and this would decay exponentially ase22a(v) l , where l is
the physical distance from the point of measurement to
region of excitation. This exponential modification repr
sents a dramatic change if the source itself has a power s
trum in the form of a power law.

The correlation functionC̃(x1 ,x2 ,v) does not have a
smooth background analogous toPu

sm(x,v) when there is
significant distance — more than a few wavelengths —
tweenx1 andx2. This is related to the fact that the analogo
correlation function defined for the source itself vanishes
these distances. If, however, we letx1 approachx2, then the
phase cancellation in the integral overx8 between pairs of
orbitsa andb that are approximately equal becomes we
and a significant contribution is obtained even though
stationary phase condition is not satisfied. By approximat
both amplitudes by that for a trajectory to the mean posit
x̄5(x11x2)/2, one can express the contribution
C̃(x1 ,x2 ,v) as an integral similar to Eq.~20!, but with an
additional factor exp(iDR) for the slight phase variation. An
expansion of the phase about this mean point gi
DR52 k̄•Dx1O(uDxu3), where k̄5(k11k2)/2 and
Dx5x22x1. To get an idea of how this integral behaves,
us assume that the dispersion relation, and alsoQ, depends
on k only through its magnitudek. ~It is unlikely that Q
would not depend to some extent on the orientation ofk, but
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the following result should be representative of cases wh
this orientational dependence is weak.! Then we can write
for the smooth part of the correlation function,

C̃sm~x1 ,x2 ,v!'
1

~2p!d21

k~v!d21

U~v!
Q~ x̄,v!

3E dVke
2 ikuDxucosu ~25!

whereu is the angle betweenDx and k̄, andk5k( x̄,v) is
found implicitly from v5n( x̄,k). The angular integral can
be computed in terms of Bessel functions to give

C̃sm~x1 ,x2 ,v!'
Vd

~2p!d21

k~v!d21

U~v!

3FGS d2D Jd/221~kux12x2u!
~kux12x2u/2!d/221GQ~ x̄,v!.

~26!

This is very similar to a result obtained by Berry@1,11# for
spatial correlations in quantum mechanical wave functi
when the classical dynamics is chaotic. The spatial dep
dence is dominated by the term in square brackets, wh
equals 1 whenx15x2 and decays in an oscillatary manner
zero asx1 andx2 get further apart. Whenx15x2 the result is
consistent with Eq.~23!. As the points move away from eac
other, the function oscillates with spatial separation with
period equal to the local wavelengthl( x̄,v), and with an
amplitude that decays at the rateuDxu(d21)/2. Remember that
this oscillation is in the spatial variables only — the depe
dence onv is smooth whenx15x2 and only oscillates
weakly~through the Bessel function! as the points are move
apart. This completes our discussion of the smooth dep
dence onv.

C. The fluctuating contribution

We return now to the calculation of cross termsaÞb in
the correlation functionC̃(x1 ,x2 ,v), where we once again
allow x1 andx2 to be distinct. The stationary phase appro
mation of Eq.~13! is complicated by the fact that the statio
ary phase points are not isolated, but occur in o
dimensional families, much like in the calculation of period
orbit contributions to the Gutzwiller trace formula@1#. As in
that case, the total integral is broken into an integral
d21 coordinates transverse to the orbit, for which station
phase analysis is possible, followed by an integral along
length of the orbit for which there is no oscillating phase a
which must be computed exactly. The result is a sum of
form

C̃~x1 ,x2 ,v!5(
g

Bg~x1 ,x2 ,v!eiRg~x1 ,x2 ,v!, ~27!

whereg labels the trajectories fromx1 to x2 ~in positive or
negative time! andRg(x1 ,x2 ,v) is the real part of the action
The amplitudeBg(x1 ,x2 ,v) is an integral over the past o
the trajectory, involving the amplitudes of the contributin
orbits a and b, and a Hessian matrix of the phase. It
re
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displayed in Appendix D. By ‘‘past’’ we mean here thos
parts of the trajectory preceding bothx1 andx2. Though Eq.
~27! above looks formally very much like Eq.~11! for the
Green’s function, there is one important difference. Causa
restricts the orbits contributing toG(x,x8,v) to those that
pass throughx8 before x, whereas in the approximatio
above forC̃(x1 ,x2 ,v), all orbits betweenx1 andx2 contrib-
ute, even those passing throughx1 first. Other than that the
structure is similar, though. In fact, it is shown in Append
D that Bg(x1 ,x2 ,v) is proportional to the amplitude
Ag(x1 ,x2 ,v).

The integral one finds forBg(x1 ,x2 ,v) immediately fol-
lowing the stationary phase integral is a rather complica
one over a single spatial coordinatexi8 labeling points on the
past ofg. However, when reparametrized over the time c
ordinatet8 the integrand simplifies significantly. As show
in Appendix D, the result is that the amplitud
Bg(x1 ,x2 ,v) reduces to a product ofAg(x1 ,x2 ,v), the am-
plitude that would appear in the Green’s functio
G(x1 ,x2 ,v) ~and independent oft8), and an integral of the
source over the past of the trajectory:

Bg~x1 ,x2 ,v!52 iAg~x1 ,x2 ,v!E
2`

0

dt8uJ8u

3e2Ka[x1 ,x8~ t8!,v]2Kb[x2 ,x8~ t8!,v]

3Ph„x8~ t8!,v…. ~28!

Strictly speaking, one might define the Green’s-function a
plitudeAg(x1 ,x2 ,v) only if x2 precedesx1 on the trajectory.
If the reverse occurs we can, if necessary, define the am
tude throughAg(x1 ,x2 ,v)5Ag̃

* (x2 ,x1 ,v), where g̃ is the
reversal of the orbitg. The integral overt8 in Eq. ~28! is
taken up to the intersection of the trajectory with whichev
of the pointsx1 or x2 comes first, and this is wheret850 is
defined. LetQg(x1 ,x2 ,v) be the function defined in Eq
~19!, evaluated for this initial point of the trajectory — th
arguments are changed because we label the trajectory
(x1 ,x2 ,v) and g rather than the initial condition in phas
space. Then we can write

Bg~x1 ,x2 ,v!52 iAg~x1 ,x2 ,v!e2uKg~x1 ,x2 ,v!uQg~x1 ,x2 ,v!.
~29!

The functionQg(x1 ,x2 ,v) can be thought of as an accum
lated excitation of the trajectoryg over its past by the field
h.

Let us now specialize these results to the power spect
Pu(x,v) by settingx25x15x. In this case we get contribu
tions from all trajectories that pass through and return tox.
Such orbits occur in time-reversed pairs and their contri
tions are complex conjugates of each other. Pairing th
together in the sum we get

Pu
osc~x,v!5(8

g
2 uAg~x,x,v!ue2uKg~x,x,v!u

3cosFRg~x,x,v!2
mgp

2
2

~d21!p

4 GQg~x,x,v!.

~30!
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The prime indicates that this sum is restricted to trajecto
in positive time — the time-reversed orbits are included
the argument of the sum along with them. We have a
explicitly included the phase of the amplitudeAg(x1 ,x2 ,v)
— mg is the Maslov index of the orbitg, computed as if it
would contribute to a Green’s function. In this form
Pu(x,v) is obviously real, as it should be. This fluctuatin
function of v is to be superimposed on the steady ba
ground represented by Eq.~20!.

As we did forPu
sm(x,v), let us estimate the magnitude o

Pu
osc(x,v) for the special case of billiard problems. Assum

ing that there is no extra damping of waves from reflectio
at boundaries, the estimate in Eq.~22! should still be valid
for Qg . The size ofAg remains to be estimated. The explic
expression in Eq.~D2! contains a factor that scales like a
inverse rescaled group velocity,J/ ẋi;J/@]v/]k#;U21.
There remains the determinant of a matrix that scales
@k/L# (d21)/2, whereL is a characteristic length of the system
In two-dimensional systems, for example,L is the distance to
the nearest focal point. The amplitude therefore scales
cording to

uAgu;U21@k/L#~d21!/2. ~31!

We find, then, that the magnitude of a typical contribution
Pu
osc depends onv as follows:

uBgu;
e2a lg

~kL!~d21!/2

kd21

aU2 Ph~v!. ~32!

Here, l g is the geometrical length of the orbit. Comparin
with Eq. ~23!, we see that oscillatory contributions a
smaller than the smooth part by a factor of ord
e2a(v) lg/@k(v)L# (d21)/2. Notice also that, unlike the smoot
part, the oscillating part of the power spectrum~or the cor-
relation function! necessarily has an exponential depende
on the frequency even when measurements are made i
excitation region — this exponential dependence will dom
nate the oscillating contribution when the decay lengtha21

is smaller than typical orbit lengths.

V. TRACES

The approximation to the power spectrum takes on a p
ticularly elegant form if we average over position. As wi
the trace of the Green’s function in the Gutzwiller trace fo
mula @1#, the result is a sum over periodic orbits, each with
contribution that is canonically invariant and easy to co
pute. Let us define

P̄u~v!5E dx Pu~x,v!. ~33!

We will tacitly assume that the dynamics is confined to
bounded region in space, so that this integral makes sens
the system were unbounded, one could integrate over s
subregion and confine the contributions of classical or
discussed below to those parts that lie in that subregion
the source power spectrum is homogeneous as in Eq.~10!,
thenP̄u(v) can be expressed in the following invariant wa
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P̄u~v!5Ph~v!Tr@Ĝ~v!Ĝ†~v!#, ~34!

which justifies the term trace formula for what follows. Th
is to be compared with the Gutzwiller trace formula,
which the trace ofĜ(v) rather than ofĜ(v)Ĝ†(v) is com-
puted. If the source power spectrum is not homogeneo
then invariance is lost because there are preferred coo
nates in which to calculate its contribution, but the bro
structure is still that of a trace formula.

We first calculate the smooth part. Integrating overx, Eq.
~20! for Pu

sm(v) becomes

P̄u
sm~v!5

1

~2p!d21E dx dkd„D~x,k,v!…Q~x,k,v!.

~35!

This has the same form as the Thomas-Fermi contributio
the density of states@1# — an integral over the ‘‘energy
shell’’ n(x,k)5v in phase space with the canonical meas
*dxdkd„D(x,k,v)…. The only difference is that, here, ther
is the integrandQ(x,k,v).

Calculation of the trace of the oscillating part by the s
tionary phase condition is the same as the calculation of
Gutzwiller trace formula — the stationary phase conditi
restricts contributing orbits to those that are periodic, a
stationary phase calculation around each periodic orbit t
leads to a time integral around the corresponding primit
orbit. There are three differences: orbits with negative ti
contribute; there is an extra factor of2 iQe2uKu for each
orbit; there is a factoruJu in the amplitudeA that converts
any time integral around the orbit fromt to t. The result is
the following sum over periodic orbits:

P̄u
osc~v!5(

po
2 i ^Q&ppoe

2Kpo

3H i Tppo
udet~Mpo2I !u1/2

eiRpo2 impop/2J . ~36!

The term in curly brackets is what one gets in a straight tr
of Ĝ(v) @remember that there is a minus sign in the defi
tion of Ĝ(v) relative to the definition of the Green’s func
tion in quantum mechanics, so the factor in front isi , not
1/i #. Mpo is the linearized surface of section mapping arou
the orbit andmpo is the Maslov index of the orbit as a per
odic orbit, not the indexmg of the Green’s function. The sum
over orbits includes reversals of orbits as well as forwa
iterations. The termTppo is the integral ofdt, not dt, over
the primitive orbit,

Tppo5 R ppodtuJu5 R ppodt. ~37!

The time integral actually occurs with an argume
Q„x(t),k(t),v…, but we have chosen not to put this in th
curly brackets to clarify the connection with the Gutzwill
trace formula. To compensate, there is a fac
2 i ^Q&ppoe

2uKpou in front, where

^Q&ppo5
1

Tppo
R ppodtQ„x~ t !,k~ t !,v…. ~38!



d

iv
p
t

th

iv
f

,
on

ng
is

n

la
i
a

a
e

an

,

u-
a
ut
as
, s

o
ve

or
-
ight
ria-
e
ater
re
rm
to
, in

r-
of
in-
ace
im-
re-
—
ttle
ic.
the
m-
tor
is

ing
d a
ffer

he

be-
nsic
ve
ery
u-
lf.
por-
ua-
ly-
e.
by
to
this

his
at
nd
e
ter
of

e

55 5559GEOMETRICAL ORBITS IN THE POWER SPECTRA OF WAVES
We put a subscript ppo on̂Q&ppo because it does not depen
on how many times the periodic orbit is repeated.

Let us reorganize the sum as one first over the primit
periodic orbits, followed by a sum over the number of re
etitions r . We couple together positive and negative repe
tion numbers, as in Eq.~30!, to get

P̄u
osc~v!52(

ppo
^Q&ppoTppo(

r51

`
e2r uKppou

udet~Mppo
r 2I !u1/2

3cosF r SRppo2
mppop

2 D G . ~39!

Everything here is canonically invariant, except for^Q&ppo,
which singles out configuration space coordinates if
source is not homogeneous.

We conclude this section with estimates for the relat
magnitudes ofP̄u

sm(v) and P̄u
osc(v) in the special case o

billiard systems. Equation~22! still holds for P̄u
sm(v), except

now there is a factor ofV, thed-dimensional volume of the
system in configuration space. As forP̄u

osc(v), Eq. ~23!
works for ^Q&ppo, andTppo; l ppo/U. Putting this together
and comparing, we see that the amplitude of a typical c
tribution to P̄u

osc(v) is of the order

P̄u
osc~v!;

klppo
kdV

e2a lppoP̄u
sm~v!. ~40!

For orbits of similar length, or in regimes where dampi
over the length of an orbit is insignificant, this relative size
smaller than the ratioe2a lg/(kL)(d21)/2 that we calculated
for Pu(x,v). Therefore, we see that integrating overx has
the effect of decreasing the importance of the oscillatio
relative to the smooth background.

VI. APPLICATION TO THE HYDRAULIC JUMP

Let us show how the theory developed here can exp
the power spectrum in Fig. 1. A thorough analysis is given
Ref. @7#, but here we will confine ourselves to the main fe
tures, to illustrate that the formulas work.

Linear propagation of surface waves in water is a stand
problem of hydrodynamics@12#, treated by assuming that th
velocity field is derived from a potentialu5¹f for which
the continuity equation reduces to Laplace’s equation,
then imposing time-dependent boundary conditions onf by
balancing forces at the surface. The equations are messy
yield a simple dispersion relation@12#:

v25S g1
Tk2

r D ktanhkh, ~41!

whereh is the depth of the water,T the surface tension,r the
density, andg the acceleration due to gravity. In the hydra
lic jump experiment we should in principle also include
Doppler shift arising from the radial flow of the water, b
this flow velocity is always smaller than the group and ph
velocities of the waves and therefore has a small effect
we ignore it.

This dispersion relation is enough to determine most
the dynamics governing the geometrical limit of the wa
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equation. As long as the depth of the water is uniform,
deep enough that tanhkh'1, the dispersion relation is inde
pendent of position and the geometrical rays are stra
lines. This is essentially the case in the experiment — va
tion in tanhkh is only significant below about 20 Hz in th
power spectrum shown, and even then the depth of the w
is uniform to within about 20% outside the jump. Therefo
it is a good working assumption that the rays are in the fo
of straight lines in the interior of the system. It remains
determine what happens to rays at the boundaries, which
the case of Fig. 1, are~a! an inner circle formed by the jump
itself, and~b! an outer boundary imposed by placing a ba
rier. A complete treatment of wave propagation at either
these boundaries is forbiddingly difficult — even determ
ing the shape of the unperturbed flow before adding surf
oscillations is a serious problem. We therefore adopt a s
plified treatment. We treat the outer boundary as sharp,
flecting rays specularly with some unknown phase shift
empirically one can see that waves are reflected with li
loss of amplitude. The jump itself is more problemat
When the spectrum is analyzed, no evidence is found for
contribution of rays that are incident on the jump. Presu
ably, all such rays are so long that the dissipation fac
damps them out completely. It may also be that there
enhanced damping at reflection from the jump contribut
to their nonappearance. In practical terms, we do not nee
detailed explanation of these reflections, and we do not o
one.

In a complete analysis we would also want to know t
equivalent of the dispersion functionD(x,k,v) to determine
how the wave couples to the source. We do not do this
cause in our case the source does not have any intri
meaning of its own. The model of a source forcing the wa
equation was used as a simplistic replacement for the v
complex problem of the radial flow outside the jump co
pling with an irregular and nonlinear flow in the jump itse
In a sense the source represents all the missing, but im
tant, terms that were excluded from the hydrodynamic eq
tions near the jump. We will satisfy ourselves with the ana
sis that can be achieved with the dispersion relation alon

The smooth part of the power spectrum is obtained
integrating over all orbits that go directly from the jump
the point of measurement. The most significant aspect of
contribution is that it will be damped at a ratee22a(v) l where
a(v) is the inverse decay length due to viscous damping@7#
~not included in the dispersion relation above! and l is the
distance from the jump to the point of measurement. T
decay dominates thev dependence of the power spectrum
high frequencies. For the geometry considered, it is fou
that there is only one orbit contributing significantly to th
oscillating part. This is the radial orbit that goes to the ou
boundary and is reflected straight back. The contribution
this orbit is of the form

Pu
osc~v!5F~v!e2a~v![2 l1L]cos@k~v!L1u#, ~42!

whereL/2 is the distance fromx to the outer edge,F(v) is
an unknown amplitude, andu an unknown phase. We hav
separated out the exponential decay from theQ factor
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5560 55STEPHEN C. CREAGH AND PETER DIMON
(e22a l) and the decay over the orbit itself (e2aL). Having
done this, the remaining amplitudeF(v) should depend
more weakly onv.

The simplest check of the oscillating contribution is
examine the spacingDv between peaks. It is given by

Dv5
2p

L

]v

]k
. ~43!

We immediately see now why the spacing between pe
increases as the point of measurement approaches the
(L→0). The gradual increase of the spacing with frequen
is also simple to explain. As long as the wavelength is l
than about 2 cm~and this is usually the case!, the capillary
term dominates over gravity in the dispersion relation a
v2;k3, soDv;v1/3, as is observed empirically. For a mo
detailed comparison, we compare in Fig. 3 the positions
the peaks in the power spectrum with the prediction of E
~42!. For reasonable choices ofL andu, quantitative agree-
ment is obtained over a wide range of frequencies.

VII. CONCLUSION

Following observation in a hydraulic jump experimen
we have shown that interference effects arise in a nat
way in the power spectrum of any variable that evolves
cording to a wave equation. The interference effects are
dent when the wave equation is driven by a source that it
has a power spectrum that varies smoothly over a large ra
of frequencies. In this case the power spectrum of the w
variable consists of a smooth background, similar to

FIG. 3. The frequencies at which maxima appear in the po
spectrum in Fig. 1 are plotted as circles. Crosses show the pea
Eq. ~42! predicted by the dispersion relation in Eq.~41!. The length
used wasL58.0 cm, which is consistent with the geometry of t
experiment. The height effects only the lowest peaks and the a
age experimental value,h51.5 mm, was used. The phas
u5176° was chosen to fit the data.
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source power spectrum, upon which are superimposed fl
tuations in frequency that can be related to trajectories
tained from the geometrical limit of the wave equation.

The connection between the source and wave power s
tra was made under the assumption that spatial correlat
in the source have length scales much shorter than a w
length. Using a semiclassical approximation of the Gree
function, we arrived at straightforward expressions for t
smooth and fluctuating parts of the wave power spectru
The smooth part is an integral over all trajectories of a giv
frequency passing through the point in space where the m
surement is taken. Each trajectory donates a contributioQ
given by an integral over its past of the source power, mo
lated by an exponential decay arising from dissipation. T
fluctuating part is a discrete sum over all trajectories t
begin and end at the point of measurement. Each contrib
a term with a phase and amplitude closely related to thos
the Green’s function, but with an additional factorQ similar
to the term arising in the smooth part.

We also derived trace formulas that apply to an averag
the wave power spectrum over position. These formulas
canonically invariant, and are very similar to the Gutzwill
trace formula for the density of states in quantum mechan
The smooth part is an integral in canonical coordinates o
an ‘‘energy shell’’ in phase space, formed by fixing the fr
quency, with an excitation factorQ in the integrand. The
fluctuating part is a sum over all periodic orbits at the giv
value of frequency. The contribution of each is the same
the contribution that would occur in the Gutzwiller trace fo
mula, except there is once again a factor ofQ, this time
averaged over the periodic orbit.

This picture enabled us to explain the main features of
power spectra that had been obtained in the hydraulic ju
experiment. There is one important orbit there, going radia
from the point of measurement out to the edge and ba
This produced a single sinusoidal oscillation in the pow
spectrum, whose local period agreed well with the result p
dicted from the dispersion relation. We suspect that osci
tions like this may appear in the power spectra of other w
systems. Examples are fluctuations in the electromagn
field of a blackbody and in acoustic emission signals m
sured in finite systems.
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APPENDIX A: EXPLICIT SEMICLASSICAL
GREEN’S FUNCTION

In this appendix we will provide a detailed discussion
the semiclassical approximation for the Green’s funct
G(x,x8,v) appearing in Eq.~11!, including explicit formulas
for the amplitudesAa(x,x8,v) etc. In order to write down a
complete approximation for the most general wave opera
L̂(v), the most efficient approach is to reformulate the pro
lem so that it is directly equivalent to the definition o
Green’s functions in quantum mechanics. Then the stand
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formulas derived in that context can be quoted directly.
To formulate the problem in this way, we introduce

extra parameterl, playing the role of energy, and define
Green’s functionG̃(x,x8,v,l) by

$l2L~ iv,¹,x!%G̃~x,x8,v,l!5d~x2x8!. ~A1!

This gives us the Green’s function we want whenl50:

G~x,x8,v!52G̃~x,x8,v,0!. ~A2!

Though evaluated atl50, the semiclassical approximation
will involve derivatives in whichl varies infinitesimally.
The parameterl controls the manner in which the frequen
v appears in the approximation.

Insertion of an eikonal ansatz into thel-dependent equa
tion yields a Hamilton-Jacobi equation of the form

l2D~x,k,v!50, ~A3!

where the dispersion functionD(x,k,v) plays the role of a
phase-space Hamiltonian, corresponding to the oper
HamiltonianL̂(v). In this equationv appears as a paramet
and does not play a dynamical role. We can invert this eq
tion to writev5n(x,k,l) @in this section we find it conve
nient to distinguish between phase space functio
D(x,k,v) andn(x,k,l), and the values they take on,l and
v—the distinction may be relaxed elsewhere#. It turns out
that either of the two functions,D(x,k,v) or n(x,k,l) gives
the same paths in phase space when used as Hamilton
However, the time increments,dt and dt respectively, pa-
rametrizing the paths are different. They are related to e
other by

dt5J~x,k!dt, ~A4!

where the JacobianJ(x,k) can be calculated from one of tw
equivalent forms:

J~x,k!52
]n~x,k,l!

]l U
l50

52S ]D~x,k,v!

]v U
v5n~x,k!

21

.

~A5!

This is verified by writing out Hamilton’s equations and im
plicitly differentiating through Eq.~A3!. We are therefore
given a choice between describing the dynamics in term
the variables (l,t) or (v,t). While the results are initially
given to us in terms of (l,t) and indeed are most compact
written in terms of those variables, the variables (v,t) are
more physical. For example, one can often write a local d
persion relationv5n(x,k) ~with l50) more easily than
writing the wave equation in a form that has an obvio
semiclassical limit, as with water waves. We will therefo
endeavor to quote the final results in terms of (v,t), despite
the notational inconvenience.

Now we are ready to discuss the semiclassical approxi
tion to G̃(x,x8,v,l). It has the same form as Eq.~11!, a sum
over trajectoriesa going fromx8 to x at fixed values ofl
andv. The amplitude of each contributiona is of the form

Ãa~x,x8,v,l!5
1

i

1

~2p i !~d21!/2US ]~k8,t!

]~x,l! D
~x8,v!

U1/2e2 imp/2,

~A6!
or

a-

s,

ns.

ch

of

-

s

a-

where (x8,k8) are the coordinates of the initial point an
(x,k) those of the final point. We denote the time of the or
by t in D dynamics and byt in n dynamics. The subscript
(x8,v) on the Jacobian indicate that those variables are h
fixed while the derivatives are taken. A detailed discuss
of the semiclassical Green’s function can be found in R
@1#.

We want to calculate the amplitude inG(x,x8,v), given
by Aa(x,x8,v)52Ãa(x,x8,v,0), in such a way thatl does
not appear explicitly. This is achieved by certain manipu
tions of the Jacobian in the amplitude of Eq.~A6!, which we
do not show in detail. We just quote the result:

Aa~x,x8,v!5
i

~2p i !~d21!/2 uJJ8u1/2US ]~k8,t !

]~x,v! D
x8
U1/2e2 imp/2.

~A7!

The dispersion relationv5n(x,k) is enough to determine
everything in this amplitude except the factorsJ8 and J,
which are obtained by evaluating Eq.~A5! at the initial and
final points of the trajectory, respectively. The main part
the amplitude should remain unchanged even if we cons
very different types of wave equations such as integral eq
tions or equations with free boundary conditions. With t
assumption that the wave equation was a PDE we arrive
a definite expression for the remaining Jacobians, which
interpret as telling us how the source couples locally to
wave field. For other types of wave equations it just rema
to calculate the analog of this coupling factor, and the res
the calculations can then proceed in direct analogy w
those discussed in the main text, presumably without qu
tative differences.

APPENDIX B: IMAGINARY PART OF THE ACTION

The imaginary partK of the action of an orbit is easily
treated at the level of a first order perturbation about a r
orbit. The real orbit is first computed using only the real p
of the dispersion relation. The perturbation due to the ima
nary part is then calculated as a special case of the follow
general relationship for the variation of an action with a s
tem parameter:

]S~E;,a!

]a
52E

orbit
dt

]H

]a
. ~B1!

HereH is any Hamiltonian depending on a parametera, and
S(E;a) is the action of an orbit with energyE that is peri-
odic or has end points fixed in configuration space. An
plicit proof of this is given, for example, in@13#. Applying
this to the complex dispersion relation, we obtain the follo
ing approximate expression forK,

K'2E real
orbit

dt Im~n!, ~B2!

where the integral is taken over the real orbit obtained
using Re@n(x,k)# as a Hamiltonian.

APPENDIX C: EXPLICIT CALCULATION OF Pu
sm
„x0 ,v0…

In this Appendix we fill the gaps between Eqs.~15! and
~16!, expressing the smooth part of the approximation
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Pu
sm(x,v) in terms of more natural variables than arise in t

initial substitution of the semiclassical approximation.
The first step is to expand the space over which integ

tion takes place to include frequency and final position.
(x0 ,v0) be the particular values of the variables (x,v) at
which we want to evaluate the power spectrum. Then we
rearrange the measure appearing in Eq.~16! as follows:

(
a

E dx8uAa~x0 ,x8,v0!u2

5(
a

E dxdx8dvd~x2x0!d~v2v0!uAa~x,x8,v!u2.

~C1!

The variables (x,x8,v), along with the indexa, can be re-
garded as coordinates for the (2d11)-dimensional space o
all possible trajectories. More natural variables for the sp
of trajectories would be (x8,k8,t), the coordinates of the ini
tial point and the time of the orbit. The amplitude ter
uAa(x,x8,v)u2 above contains the Jacobian for precisely t
coordinate transformation, turning(a*dxdx8dv into
*dx8dk8dt. Taking Eq.~A7! and putting the variablex8 into
the Jacobian proper we get

uAa~x,x8,v!u25
1

~2p!d21uJJ8uU S ]~x8,k8,t !

]~x8,x,v! D
x8
U, ~C2!

which allows us to take Eq.~C1! one step further:

(
a

E dx8uAa~x0 ,x8,v0!u2

5
1

~2p!d21E dx8dk8dtd~x2x0!d~v2v0!uJJ8u.

~C3!

As mentioned in Appendix A, the presence of the Jacobi
uJJ8u is a penalty to be paid for using the physical variab
(v,t) rather than the mathematically more convenie
(l,t). Had we written the result in terms of the measu
*dx8dk8dtd(x2x0)d(l), they would not be there.

This proves Eq.~16!.

APPENDIX D: EXPLICIT CALCULATION OF C̃„x1 ,x2 ,v…

In this Appendix we supply the calculation leading to t
expression forBg(x1 ,x2 ,v) in Eq. ~28!. Let xi8 and x'8 be
the coordinates perpendicular and parallel, respectively
the trajectory atx8. Computation of the integral in Eq.~13!
along thex'8 coordinates by the stationary phase approxim
tion gives

Bg~x1 ,x2 ,v!5S 2p

i D ~d21!/2

eiN1p/2E dxi8Aa~x1 ,x8,v!

3Ab* ~x2 ,x8,v!U]2~Ra2Rb!

]x'8 ]x'8
U21/2

3e2Ka~x1 ,x8,v!2Kb~x2 ,x8,v!Ph~x8,v!,

~D1!
-
t

n

e

s

s
s
t

to

-

whereN1 is the number of positive eigenvalues of the sy
metric matrix ]2(Ra2Rb)/]x'8 ]x'8 . The next step is to
change the integration variable fromxi8 to a more natural
time variablet8.

The calculations that follow can be performed by expli
manipulation of the Jacobian and Hessian matrices as
appear in Eq.~D1!. However, much of the detail can be sid
stepped if we appeal instead to an analogy with a very si
lar expression for the composition of propagators in quant
mechanics, which we do in this appendix.

When the spatial arguments of the Green’s function
restricted to~possibly distinct! surfaces of section in phas
space, the amplitudes and phases in the sum over orbits
a form almost exactly the same as those of a quantum pr
gator between two different timest andt8. The amplitude for
contribution to the Green’s function of an orbita going from
x8 in the surface of sectionS8 to x in S can be factored as
follows:

a~x,x8,v!5 iU JJ8
ẋiẋi8

U1/2

3H 1

~2p i !~d21!/2US ]k'8

]x'
D
x8,x' ,v

U1/2e2 imap/2J .
~D2!

The term in curly brackets is formally identical to the amp
tude of the contribution of an orbit to a quantum mechani
propagatorK(x,x8,t,t8)5^xuU(t,t8)ux8& in the Van Vleck
approximation. HereU(t,t8) is the unitary time evolution
operator from timet8 to time t. This analogy has been usefu
in quantum theory@14# and will allow us here to borrow
standard results for the Van Vleck formula to write an im
mediate expression forBg(x1 ,x2 ,v).

The result we want to borrow is the statement that the r
for the concatenation of time evolution operators

U~ t2 ,t1!5U~ t2 ,t8!U~ t1 ,t8!† ~D3!

carries over to the Van Vleck approximation if we use t
stationary phase approximation to compound the operat
giving

K~x2 ,x1 ,t2 ,t1!'E dx8K~x2 ,x8,t2 ,t8!K~x1 ,x8,t1 ,t8!* .

~D4!

The trace overx8 here is formally identical to the trace ove
x'8 in the calculation leading to Eq.~D1!. Except for the
additional terms outside curly brackets in Eq.~D2!, the ma-
nipulation of amplitudes and phases that lead to Eq.~D4!
applies equally well to Eq.~D1! and we can write

S 2p

i D ~d21!/2

eiN1p/2AaAb* U]2~Ra2Rb!

]x'8 ]x'8
U21/2

52 iU J8
ẋi8

UAg~x1 ,x2 ,v!. ~D5!

Once we recognize the Jacobian for the variable cha
xi8→t8, Eq. ~28! follows immediately.
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