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Geometrical orbits in the power spectra of waves
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We investigate the relationship between the power spectrum of a wave field and that of a spatially uncor-
related source exciting it. Temporal correlations between values of the field at different positions are also
examined. It is found that interference effects can significantly alter the structure of the power spectrum,
leading to oscillations in it, even when the power spectrum of the source is a smooth function of frequency. We
derive a semiclassical approximation in which these oscillations are related to orbits of the geometrical limit of
the wave system. We also derive a trace formula that approximates a spatial average of the wave power
spectrum as a sum over periodic orbits. These calculations explain the structure of a measured power spectrum
of the fluctuating height of a fluid surface, generated by the circular hydraulic jump, which provided the
motivation for the study[S1063-651X%97)04505-4

PACS numbes): 47.35:+i, 03.65.Sq, 05.4G:j, 02.50—r

I. INTRODUCTION tion of such effects in a particular experimeidi, described
in Sec. Il. There a time series was measured of the height of
Semiclassical approximations to quantum mechanics havilowing water outside a circular hydraulic jump, from which
excited a lot of activity in recent years, especially in relationa power spectrum was computed. This revealed a strong,
to systems for which the classical dynamics is chafitic  regular oscillation in frequency, whose period depended on
While it is natural for historical reasons to apply semiclassi-the point where the measurement was taken. It was found
cal techniques to quantum mechanics, there is no reason whigat all the essential features of this power spectrum could be
they cannot be used with equal enthusiasm for other wavexplained with a simple model — that of a linearized wave
systems, such as electromagnetic cavities or acoustic excitaguation describing surface oscillations, driven by a noisy
tion of solid objects. Indeed, even though theoretical studiesource term modeling the effect of the forcing of the surface
have tended to concentrate on quantum mechanics, much ofcillations by turbulence generated at the jump. Semiclassi-
the recent experimental work in the field has been with theseal analysis relates the power spectrum to “classical” orbits
other wave system2-6], so classical wave systems would in the geometrical limit, and the oscillation with frequency
seem to provide a rich arena for experimental applications ofan be explained with a single orbit deduced from the geom-
the techniques. There has been a tendency to view thesgry of the experiment.
experiments as analogs to quantum mechanical systems andThis analysis depends little on the details of the particular
therefore to perform measurements that are natural in thaystem, and is developed quite generally. We mention in
context. The semiclassical approximation of diverse classicabec. Il the possibility of observing these effects in blackbody
wave systems is interesting in its own right, however, andadiation, and in acoustic emissions in solids, for example.
when viewed independently, alternative measurements maye assume a wave system driven by a stochastic source. In
be natural that have no analog in quantum mechanics. Sec. Il the power spectrum of the wave field is related to
An example of such a measurement is one that forms thehat of the source through an integral of the Green'’s function
basis for the calculations in this paper — the characterizatiowver its source variable, under the assumption that the source
of a stochastic variable by its power spectrum. While poweiis uncorrelated at length scales of the order of a wavelength.
spectra are sometimes used in quantum mechanics to extrahere is a similar calculation for correlation functions.
information about eigenstates, they are used as a tool in thehrough this integral over the Green'’s function, interference
analysis of stochastic systems with a fundamentally differengffects appear in the wave field’s power spectrum. These are
underlying philosophy, the interest in the latter case ofterbest understood through an approximation for the Green’s
focusing on broad scaling properties rather than in identifyfunction as a sum over geometrical orbits. We show in Sec.
ing peaks at precise frequencies. If the stochastic variablp/ that fluctuations in the power spectrum at a given point
examined has a wave character, interference effects can hagan be expressed as a sum over geometrical orbits that begin
a dramatic impact. In this paper we study fluctuations as @nd end at that point, and whose past passes through the
function of frequency that are observed in such power speaegion of excitation of the wave field. These fluctuations are
tra, and relate them to trajectories in the geometrical limit ofsuperimposed on a smooth contribution that is reminiscent of
the wave system. the Thomas-Fermi density of states in quantum mechanics.
The analysis presented here was inspired by the observ@Ve also show that correlations between two different points
can be approximated by a sum over trajectories that connect
those two points. Correlations between two different points
*Present address: Division de Physique’ diigue, Institut de  have no smooth background. We estimate the expressions for
Physique Nuclaire, Universitede Paris-Sud, Orsay Cedex 91406, the power spectrum in the particular case of billiard systems
France. — homogeneous and isotropic wave equations with interfer-
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ence effects arising from reflections at surfaces where bound- 103

ary conditions are imposed. The smooth part represents

modification of the source power spectrum by a factor that is

an algebraic function of frequency, and oscillations are found

to have amplitudes that decay exponentially with frequency 10

due to dissipative damping of the wave. If the wave field is

measured outside of the region of excitation, however, then

even the smooth part has an exponential dependence on fre-

quency. 10
More elegant semiclassical formulas are obtained by av-

eraging the power spectrum over space. Then the approxima-

T T TTTTi
[ RN

Ty
Lol

P.(H)

T T TTTTITf

tion turns into a sum over orbits that are periodic in phase ol .
space, and this is calculated in Sec. V. The formula derived 0.0 50.0 100.0 150.0 200.0
there is very much like the Gutzwiller trace formula], f (Hz)

except that each periodic orbit term carries an extra weight

determined by the strength of the source power spectrum FiG. 1. A power spectrum from the hydraulic jump experiment.

over its length. Finally, in Sec. VI we apply the results de-In this case the boundary conditions were fixed by placing a reflec-
rived here to understanding quantitatively the main featuresor near the edge of the plate.

of the power spectrum measured in the hydraulic jump ex-

periment. We relegate many details of the semiclassical ca
culation to the Appendixes. In Appendix A, we give a de-
tailed description of the semiclassical calculation for the
Green’s function — only the main points are discussed in th
text. The contributions to the Green’s function are dampe

Fects. In general one finds that the spacing between peaks

increases steadily with frequency, roughlyfs ~ », and

it is further observed that the spacing increases when the
oint of measurement is brought closer to the edge of the

R . : : ; ~~"plate. This structure can completely dominate the power
due to dissipation and in Appendix B we give a simple recip spectrum, and a full understanding is necessary before an

for calc_ulatm_g th_e damping factors without having to_calcu-analysis of the underlying phenomena can be attempted.
late trajectories in complex phase space. In Appendix C we We can explain the main features of the power spectrum

use the .detailed s.pecificatio.n Of. the Green’s fgnction diSi/vith a simple model. We assume that the surface waves are
cussed in Appendix A to simplify the calculation of th? of small enough amplitude that their propagation is governed
smooth part O.f the power spectr'um. We do the same thmgy a linear wave equation. We then model the driving of the
for the oscillating part in Appendix D. surface waves by the irregular jump by including a noisy
source term in this wave equation. From here it is possible to
see that the oscillations arise from interference between
waves that travel directly from the jump to the point of mea-
We begin with a brief discussion of the experimentalsurement, and waves that pass throught the point of measure-
measurements that provoked the analysis presented in thigent, are reflected, and return. We present a discussion in
pape — a complete description of the experiment, with the next section that is valid for any linear wave equation
more detailed analysis, can be found in Hé&f. driven by noise. Following the general analysis, we will re-
In the experiment, measurements were taken of the fluidurn to the experiment in Sec. VI and show how the model
height at a point outside a circular hydraulic jump. This jumpquantitatively explains the main features observed.
appears when fluid flows radially outwards from a point of Among other possible instances where structures like this
injection at the center of a circular plate. At a certain radiusmight appear, perhaps the most obvious is in the thermal
depending on the flux, the fluid height increases abruptly anfluctuations of the electromagnetic field of a blackbody cav-
the radial velocity falls. The flow appears to be stationary aity. The natural frequency range in which to observe this
sufficiently small flow rates, but when the flux is large effect is that of microwaves. In this case, the source exciting
enough the jump starts to fluctuate and waves appear on tliee wave would be currents on the surface of the cavity. One
surface. This onset of irregular behavior is very interesting asnight then see in the power spectrum a smooth background
a simple and controllable example of a hydrodynamic instacoming from the Planck distribution, with interference-
bility, and was studied experimentally for this reason. Ainduced fluctuations superimposed upon it. Another possibil-
natural first step in the analysis is to compute a power spedty is the phenomenon of acoustic emission, where the sto-
trum from a time series of the height of the fluid at a givenchastic excitation of sound waves in solids arises through the
point. random changes of domain wall8]. If there are regimes
When this was done, the power spectrum was seen tehere the domain walls are of small enough length scale,
exhibit a marked and regular oscillation with frequency. Wethat source is spatially uncorrelated at length scales of an
show in Fig. 1 an example in which the boundary conditionsacoustic wavelengtfes demanded by the coming analysis
are fixed by placing a wall at the edge of the plate. It is foundand if the jumps are close enough together in time, then the
that the strength of the oscillation effects depends on theffect will be of acoustic noise with a broadband spectrum.
manner in which surface waves are reflected from the edg&ther examples where interference effects might be observed
and placing a wall there is the cleanest way to control theare water waves on longer lengths scales than are present in
reflections. In the original experiment, reflections from thethe hydraulic jump experiment, such as wind-generated
edge of the plate produced similar, but less controllable efocean waves, seismic waves produced by earthquakes or

II. MOTIVATION



55 GEOMETRICAL ORBITS IN THE POWER SPECTRA OF WAVES 5553

other sources, and production of electromagnetic radiatioand the Fourier transform of this gives
by the currents generated in a turbulent plasma. -
(n(x,0)7* (X, 0"))=27C(x,X",0)(w—o"). (3)
Ill. A GENERAL MODEL There are similar expressions for the autocorrelation function
In this section we examine a simple model inspired by theof the response(x,t).
hydraulic jump experiment — that of a fiels(x,t) whose To connect the autocorrelation functions we write the
evolution in time is governed by a linear wave equationwave equation in the frequency domain:

driven by noise. We will concentrate on the following for- ) - -
mulation of the problem: L(io,V,X)U(X,0) =n(X, o), (4)

9 and define its Green's functidB(x,x’,w) in the usual man-
E(E,V,x) u(x,t)=n(x,t), (1) ner,

i i L(>iw,V,X)G(X,X",w)=6(x—X"). (5)
where the linear wave operatg(d/dt,V,x) is homogeneous
in time and of orden, defined on a-dimensional configu-  As an abstract operator, we will sometimes denote the wave
ration space. The source teri(x,t) is taken from some gnerator at the left by (w). The Green’s function is formed
ensemble of random functions whose properties will be dISby taking matrix elements of the related operator
cussed in more detail later. We will specify more preciseé(w)zz(w),l
conditions on the wave equation in the next section, but for Using the G.reen’s function to solve for the response and
the moment we will just say that it should have solutions that 9 P

are predominantly oscillatory, with some small degree of dis-fa0 Vllirv?/?rzggr;\;taigazehi(:)nsgt\r?vzlgno;j% lérgﬁgll;:i%tl;o?usr’]cvt\ggn?t the
sipation present. '
The idea here is tha$(x,t) might represent some physi- _
cal process where activity occurs on all possible time scales, Cu(xl,xz,w)=J dxiJ’ dxy; G(Xq,X1,0)G* (Xp,X5,®)
possibly with some interesting scaling behavior. Let us sup-
pose that one was interested in measuring the power spec- X’én(xi,xé,w). (6)
trum of this process, and that it was accessible not directly
but through the wave field(x,t) excited by it. The question We will now commit ourselves to the assumption that the
then is whether the power spectrumuti,t) differs signifi-  spatial correlation length of the source is much smaller than
cantly from that ofp(x,t). We will find that the answer is, in typical wavelengths observed in the wave system. This al-
many cases, yes. Becausgx,t) has a wave character, we lows us to make the replacement
will find that interference effects can significantly alter the -
power spectrum. If, for example, the power spectrum of C,(X1.,X9,) =P (X1, 0) 8(X;—X3) (7
n(x,t) decays smoothly to asw™ ¢, for exampleé not only .
will the power spectrum ofi(x,t) decay with a somewhat in EQ. (6), where we will refer toP,(x,w) as the power
different rate on average, but significant fluctuations will beSPectrum of the source. Then,
superimposed.
It should be pointed out that in many physical systems ofEu(XLXZ,w):f dx'G(xq,X',@)G* (Xg, X, @) P, (X', ).
interest, the wave equation will not be in the form of a partial
differential equation as in Ed1) — it might be an integral 8
equation or, as in the case of surface waves in a liquid, haveye ot important case is whep=x, and this gives us an
undetermined boundary conditions as an integral part of the . = . .
time evolution. Even if in the form of a partial differential expression foP,(X, ) = Cy(X,x, @), which W? will refer to
equation(PDE), the wave equation might not, as implied by as the power specirum of the wave system:
the notation used so far, be a scalar wave equation — sound
waves in solids or electromagnetic waves are governed by Pu(x,w)=J dx’|G(x,x’,w)|2P,7(x’,w). 9
vector wave equations, for example. We assume a scalar par-
tial differential equation because we can then, in the semiyqsice that the normalizations of the source and wave power

;:Iass,lfal fanalyrs:s of the next .SeCt.'O”z carry over Staﬂdargpectra are defined differently. These expressions for the au-
ormulas from the WKB approximation in quantum mechan-,.q relation function and power spectrum will form the ba-

ics with minimal modification or awkwardness of notation. s for the semiclassical approximation in the following sec-
When more general wave systems are to be considered, ttﬁ%n_ Through them, interference effects in the Green's

basic structure of the results will be the same. function become manifest in the power spectrum of the
. wave.
A. Calculation of the power spectrum To accentuate the structure of the basic equations, let us
Let us first relate the power spectrumugix,t) to that of ~ consider for the moment the case wherg{x, w) =P () is

n(x,t). The autocorrelation function of the source is as-Position independent. Then E(B) can be written simply in
sumed to be of the form bra-ket notation as follows:

<U(th)77(x,at,)>:Cn(x-x,:t_t,) (2) EU(XlHXZ!w):Pr](w)<xl|é(w)éT(w)|X2>' (10)
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So in this case the modulation factor 16X, X5, ) is just

a matrix element of the operat@(w)G'(w) and the par-
ticular case of the power spectrum corresponds to diagonal
matrix elements of this operator. In the general case of
position-dependenP ,(x,w), one has to sandwich another

operator betwee () and G'(w) to represent the modifi-
cation of the measuréx’ by the factorP ,(x", ).

IV. SEMICLASSICAL ANALYSIS

(@) (b)

In quantum mechanics, there is a well understood ap-
proximation to the Green’s function in terms of trajectories  F|G. 2. Before stationary phase integration of Etp), pairs of
of the corresponding classical systéf]. We will use the distinct orbitse and 3 contribute to the correlation function, as
analogous approximation fdB(x,X’,w) to interpret the in- illustrated schematically ite). A contribution with stationary phase
terference effects arising in the power spectrumu@f,t). s obtained when the initial conditions of these orbits coincide, giv-
The most important features can be understood without refing a sum over the histories of single orbitsshown in(b).
erence to many of the technical details arising in the calcu-
lation. We will therefore present the calculation along twowhere « labels orbits going fromx’ to x at the specified
tracks. In the main text we will give the basic structure of thevalue of w=v(x,k), andS,(x,x’,w) =f§,k dx, taken along
approximations, writing down WKB approximations, not al- the orbit. In this preliminary analysis we will suppress
ways specifying in detail amplitudes and phase shifts, bupaslov indices(by incorporating them into the amplitude
presenting enough detail that the basic qualitative structure ignd not specifyA ,(x,x’,w) any further other than to say that
clear. We also give a detailed account of the manipulation oft is a function that changes over spatial scales much longer
amplitudes and phase shifts, but this is relegated to the Aghan a wavelengit— a complete description is given in Ap-
pendixes as the calculation proceeds. pendix A. In a physical problem, dissipation will be present

and the trajectories will have small imaginary components.

A. The starting approximation We denote the real and imaginary parts of the action by

Approximation of the Green'’s function in terms of orbits S=R+iK, (12)
can be achieved by direct comparison with the analogous
guantum mechanical calculation. This is described in detailvith K small and positive. The oscillatory part is the most
in Appendix A. We work under the assumption that theimportant and can be treated at lowest order by ignoring the
length scales over which the wave medium changes arenti-Hermitean part of the wave operator and getting real
much larger than typical wavelengths. Under these conditrajectories from the corresponding real dispersion relation.
tions, an eikonal ansat(x)exqiS(X)] is justified as a local Then the decay can be added in by calculating the imaginary
approximation to the wave field. Insertion of the eikonal an-part of the action as a perturbation of this real orbit — an
satz into the wave equation will yield a local dispersion re-explicit formula is given in Appendix B. This decay is in
lation w=v(x,k), wherek=VS is the local wave vector. turn important for the convergence of the integrations to fol-
The functiony(x,k) will then serve as a Hamiltonian for the low.
“classical limit” of the wave equation — generating trajec-  We are now ready to start calculating the correlation func-
tories or “rays” [x(t),k(t)] in the 2d-dimensional phase tion. Under the approximation above, H§) becomes
space for which X,k) are canonical coordinates. Often there
will be no explicit position dependence in the dispersion re- _ , , * ,
lation but interesting dynamics will occur at surfaces where C(Xl’xz’w)_% J dX'Ag(X1. X", 0) A (X2, X', )
boundary conditions are imposed and waves are reflected, as
in the billiard problems of quantum mechanics. X pn(x',w)eisamyX’vaSZ(szX’vw),

We will assume that the operat@fw) is approximately (13)
Hermitean — so the wave equation will have truly wavelike

solutions. A small non-He_rm_ltegn part should_ be present tQyhere o and S label the trajectories from’ to X, andx,,
represent the_ effects of d|5_5|pat|on, but we WI|! always treafespectively, illustrated schematically in Fig(a2 Under
this perturbatively. If there is a small anti-Hermitean compo-typjcal semiclassical conditions, this integral will be domi-
nent toL(w), then the dispersion relation will have a small nated by the contributions from regions where the phase is
imaginary part, leading in turn to rayx(t),k(t)] that are stationary. In principle, significant contributions can also
slightly complex. arise from boundaries of the integration where the geometry
The approximation for the Green’s function, valid when of the system leads to a cutoff of trajector{®. (Such ef-
the dispersion relation changes over spatial scales mudects might be observed in the hydraulic jump experiment,

larger than a wavelength, is of the form for example[7].) In this paper we concentrate on the domi-
nant contributions of stationary phase points. We assume that
GX,X @)~ A (XX, w)eSexx" @) (11) f[he length scales over whid?l,](_x,w) varies are Ion'g., so that
e ] ' it does not enter into the stationary phase condition. Gener-
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ating function conditions exist for the action integrals stating . ) ) o 2K !

- ’
that dR(x,x",w)/dx=k and dR(x,x",w)/dx' = —k', where PI(x,0) =2, f dx'[AL (XX, w)[?e72KX0P (X! w).
k' andk are respectively the initial and final wave vectors of “ (15)
the orbit(in real dynamics[1], and as a result the stationary

phase condition for the integral above can be writignor- . . _ . .
ing the imaginary part of the actipms Superimposed upon this nonoscillating functionxoivill be

oscillating contributions from cross terms# 3, to be calcu-
lated later. This contribution plays a role analogous to that of
IR (X1, X" @)  dRg(X,X', @) the Thomas-Fermi term in the trace formula for the density
= - of states. There is an important difference however. In the
formula above, it is assumed that the integral is dominated
= —Kj (X1, X", @)+ k(X2 , X', @). (14) by orbits that are longer than a few wavelengths — that the
contribution from shorter orbits, for which the semiclassical
approximation is not valid and ,(x,x’,) diverges, is neg-
Therefore the initial wave vectors of the orbits should be thdigible. By contrast, it is precisely the short orbit contribution
same, which simply means that the poirtsandx, lie on ~ thatis r_esponsible_: for the T_hom_as_-Fermi density of states
different parts of the same trajectory, as illustrated in Fig[1]- Besides the differences in origin, though, the contribu-
2(b). Thus, to find the stationary phase points, we must firstions are st.ructurally S|m|_lar. This will be especially evident.
find the trajectories going fromy to x, or vice versa— then ~ When we discuss traces in Sec. V, where the smooth contri-
the stationary phase points consist of all those positions bution WI|| be shown to consist of an |ntegra| over a mani-
on the “past” of that trajectory, preceding bo#y andx.. fold of fixed freql_Jency in phase space, Wlth the same mea-
It is possible to imagine circumstances whete(x, o) sure t_hat occurs in the Thomas_-F_erml de_n5|ty of states.
would have short length scales such as, for example, being !N its present form, Eq(15) is impractical because the
restricted to a boundarias for blackbody radiation in a cav- amplitudeA,(x,x’,w) is a complicated function of its argu-
ity, and possibly the hydraulic jump experimgntf the ments. W_e show in Apper_1d|x C, however, that th_e amplitude
source is restricted to a surface of codimension 1, the analy$ Proportional to a Jacobian that transforms the integral over
sis is not altered considerably. We apply the stationary phaséX’ into an integral over phase space coordinates that is
condition only along directions parallel to this surface, im-much simpler. This new form is
plying that thosed—1 components of momentum match.
Since the trajectories should also have the same frequency, _ 1
we are still essentially restricted to pairs of trajectories with Pum(XO'wO):W—_lf dx'dk’dté(w— wq)
matching initial conditions. Therefore the orbits contributing
to the correlation function are the same as before, but the X S(X(1) = X0)| 3’ [e" KK IP (x' o),
integral overx’ is restricted to the boundary.
We should point out that the products of Green’s func- (16)
tions that we encounter here, and the subsequent orbit sums
developed in the following calculation, bear a strong formalwhere, for the moment, the symbolsandw are reserved for
resemblance to certain quantum mechanical calculations. Ivariables in the integration, ang and w, are the particular
a semiclassical analysis of systems with small scattering cervalues at which the power spectrum is to be evaluated. The
ters or sharp corners in boundaries, diffraction effects aréntegral is over the (8+ 1)-dimensional space of all pos-
included by concatenating separate Green’s functions and irsible trajectories, parametrized by the initial conditions
cluding “diffraction coefficients” for each scattering point (x’,k’) and the time. The § functions restrict the integral to
[9]. When computing traces the resulting integration of prodthe submanifold where the frequency of the trajectorys
ucts of Green'’s functions is similar to that presented here. Imand the final position i%,. The arguments of the imaginary
the analysis of conductance fluctuations of two-dimensionapartK of the action function were rewritten to coincide with
electron gasses products of Green’s functions are also ethe integration variables, but it still just comes from an inte-
countered 10] leading likewise to simple orbit sums of the gral of k-dx along the orbit(the subscripta is dropped
type presented here. because there is now a unique trajectory for each argyment
The factorsd’ andJ are Jacobians to be evaluated, re-
spectively, at the initial and final points of the trajectory —
B. The smooth contribution they express the relationshipr/dt between increments in

Before proceeding further with the approximation of Eq_timet and in another timelike coo'rdi'nabe It can be calcu-
(13) for general orbits, we single out a special contribution'f‘ted as follows. The “classical” limit of the wave operator
that arises in the approximation of the power spectrum, whei(w) yields a dispersion functio® (x,k,w) and 7 is the
X1 =X,. Then it is possible for the orbii® and3 in Eq.(13)  time coordinate when this is used as a Hamiltonian. At a
to be exactly the same orhiwith the same length as well as point (x,k) in phase space, the Jacobian can be calculated
the same initial conditions In this case the actions cancel from J=—[dD(x,k,w)/dw] L. The coordinater and dis-
and there is no phase variation 85 is varied. Then the persion functionD(x,k,) are central to the discussion in-
integral must be computed as a fdHdimensional integral, troducing the Green’s-function approximation in Appendix
giving the following smooth contribution to the power spec-A, and the reader should look there for a more thorough
trum: discussion.

0

ax’ ax’
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One can also parametrize the trajectories by the finahan orbit of timet, the physical length is related to it by
phase space coordinatesK) rather than the initial coordi- |=vt=(dw/dk)t and we can write, for the imaginary part of

nates &’,k’), and because time evolution in phase space ishe action,
symplectic, the Jacobian for this transformation is 1. Follow-

ing this coordinate transformation, the integral oxeanni- _ _ 5_“’
hilates thes function in that variable, giving K=a()l=a(w) ok t @D
o 1 where we denotex(w)=Im[k(w)]. We can now explicitly
Py (qu):W—_lf dk 8(v(x,k)—)|J]| integrate Eq.(19) for Q, giving the following function of
w alone:
O !
Xf dtr|J/|672K(X,k,t )Pﬂ(x’(t’),w). Pn(‘”)

(17)
. HereU(w)=|J| Ydw/ ik is a rescaling of the group velocity
We have dropped the subscript 0 on the arguments of thgorresponding to a variable change 7. The remaining in-

power spectrum. We have also redefined the time coordinai@gral overk in Eq. (20) can easily be computed in polar
to t’ so that it varies from—< in the infinite past of the coordinates to give

trajectory to 0 when the trajectory reachesThis is now

explicitly an integral over all trajectories passing through s Qy k(w)d™?
with  frequency o — through the measure Pum(“’):(zw)dfl a(w)U(w)ZP’?(w)' (23)
Jdké(v(x,k) —w) — with each trajectory contributing an
integral over its past time coordinate where )4 is the integral over angular coordinates. If we
We can absorb the factpd’| into the integration measure further assume a power-law dispersion relation k¢, with
by writing a~w? anddD/dw~w" "1, then
dr’ =dt’|J']. (18) PiM @)~ w’P, (), (24)

While this has the disadvantage that it obscures the morwith 6=(d+1)/a—2n—g. That is, there is an algebraic
physical variabld’, it is neater, and we will use it from now correction to the power spectrum. This is expected to be
on. (We will still write time-dependent arguments in terms of typical of cases where the power spectrum of the wave field
t’ rather thanr’.) One can also simplify thé function by  is measured in the region of excitation. The result would be
writing it in terms of the dispersion function according to quite different if the field were excited in one place and
[J] 8(v(x,k) — w)=8(D(x,k,w)). Let us also introduce a measured in another — as is the case in the hydraulic jump
special symbol for the integral over. For any phase space experiment. TherQ(w) receives a contribution only from
point (x,k) we define the part of a trajectory passing through the excitation region
and this would decay exponentially as?(®)! wherel is
_(° ., oKkt o the physical distance from the point of measurement to the
Q(X'k'w)_ﬁwdT e P, (), @), (19) region of excitation. This exponential modification repre-
sents a dramatic change if the source itself has a power spec-

which is an integral over the past of the trajectory goingtfum in the form of a power law.

through &,k) at t’=0. This quantity will turn out to be The correlation functionC(x4,X,,w) does not have a

important also for the oscillating contributions. If the excita- Smooth background analogous Rj"(x,w) when there is

tion is along a boundary rather than in the bulk, there is arignificant distance — more than a few wavelengths — be-

analogous discrete sum over past intersections of the trajeéwveenx; andx,. This is related to the fact that the analogous

tory with the boundary. The smooth contribution can now becorrelation function defined for the source itself vanishes at

written more compactly as these distances. If, however, we lgtapproachx,, then the
phase cancellation in the integral over between pairs of

1 orbits @ and B that are approximately equal becomes weak,

PﬁWX,w)walf dks(D(x,k,®))Q(x,K,w). (200 and a significant contribution is obtained even though the

stationary phase condition is not satisfied. By approximating

Let us calculate the smooth term in a simple special cas@Cth amplitudes by that for a trajectory to the mean position
We consider a system that is spatially homogeneous and isg~ (X1+X2)/2, one can express the contribution to
tropic, so the dispersion relation(k) is a function of|[k| ~ C(X1,Xz,®) as an integral similar to E¢20), but with an
only. We assume that boundary conditions are responsibf@dditional factor expQR) for the slight phase variation. An
for any interference effects, so rays are reflected at boundxpansion of the phase about this mean point gives
aries but otherwise travel in straight lines, as in quantumAR=—k-Ax+O(]Ax|®), where k=(k;+ky)/2 and
billiards. The results below also work for open systems, and\Xx=X,—X;. To get an idea of how this integral behaves, let
give a complete picture in that case because no interferenates assume that the dispersion relation, and @saepends
effects are present. We assume that the source is homogen k only through its magnitudd. (It is unlikely that Q
neous, so its power spectrum can be writterPgéw). For ~ would not depend to some extent on the orientatiok, dfut
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the following result should be representative of cases wherdisplayed in Appendix D. By “past” we mean here those
this orientational dependence is weakhen we can write parts of the trajectory preceding both andx,. Though Eq.

for the smooth part of the correlation function, (27) above looks formally very much like Eq11) for the
i1 Green'’s function, there is one important difference. Causality
oy )~ 1 k(o) o) restricts the orbits contributing t6(x,x’,w) to those that
X1: X2, @ 2m9 1 U(w) Qx.@ pass throughx’ before x, whereas in the approximation

above forC(x,,X,,w), all orbits betweernx; andx, contrib-
XJ koefikle\cosﬁ (25) ute, even those passing throughfirst. Other than that the
structure is similar, though. In fact, it is shown in Appendix
) — o D that B,(X;,X;,w) is proportional to the amplitude
where ¢ is the angle betweeAx andk, andk=k(x,w) is AL(X1,Xz,).
found implicitly from w=1(x,k). The angular integral can  “The integral one finds foB.(x;,x,,®) immediately fol-
be computed in terms of Bessel functions to give lowing the stationary phase integral is a rather complicated
one over a single spatial coordinagglabeling points on the

d-1
Esm(xl,xz,w)~ Q%_l k(w) past of y. However, when reparametrized over the time co-
(2m) U(w) ordinatet’ the integrand simplifies significantly. As shown
d\ Iy 1(KIXg—Xs|) in Appendix D, the result is that the amplitude
{ (_) 2 (X w). B.(X1,X2,w) reduces to a product @,(x; ,X,,w), the am-
2] (k|x1=x,|/2) plitude that would appear in the Green's function

(26) G(X4,X,,w) (and independent df ), and an integral of the
source over the past of the trajectory:
This is very similar to a result obtained by Beird,11] for
spatial correlations in quantum mechanical wave functions
when the classical dynamics is chaotic. The spatial depen-
dence is dominated by the term in square brackets, which

0
By(xlax21w): _iAy(X11X21w)J>7mdt’|‘],|

equals 1 whex,;=x, and decays in an oscillatary manner to x @~ Kalxp X' (1), 0] —Kglxp X' ("), 0]
zero ax; andx, get further apart. Wher,; =X, the result is o
consistent with Eq(23). As the points move away from each XP,(X'(t'),0). (28)

other, the function oscillates with spatial separation with

period equal to the local wavelengi(x,w), and with an aStnctly speaking, one might define the Green’s-function am-

amplitude that decays at the rdtex|@~ Y2, Remember that plitude A, (x;,xp, ) only if x; precedes; on the trajectory.
. L . . If the reverse occurs we can, if necessary, define the ampli-
this oscillation is in the spatial variables only — the depen-

— A* =~
dence onw is smooth whenx;=x, and only oscillates tude throughAy(xl,.xz,w)—A;(xz,xl,w),,W.herey IS the
weakly (through the Bessel functidas the points are moved reversal of the orbity. The integral overt’ in Eq. (28) is

apart. This completes our discussion of the smooth depeﬁ‘:"ken up to the intersection of the trajectory with whichever
dence onw. of the pointsx,; or x, comes first, and this is wheté=0 is

defined. LetQ,(X;,X;,w) be the function defined in Eqg.

(19), evaluated for this initial point of the trajectory — the

arguments are changed because we label the trajectory with
We return now to the calculation of cross termg 8 in  (x;,X;,0) and vy rather than the initial condition in phase

the correlation functiorC(x,,x,,w), where we once again space. Then we can write

allow x; andx, to be distinct. The stationary phase approxi-

mation of Eq.(13) is complicated by the fact that the station- B,(X1.X2,@) = —iA (X1, Xp,w)e” Ks129)lQ_(x;,%,, ).

ary phase points are not isolated, but occur in one- (29

dimensional families, much like in the calculation of periodic The funci be thouaht of
orbit contributions to the Gutzwiller trace formula]. As in e func .|on_Q7(x1,x2,w) can be thought ot as an accumu-
that case, the total integral is broken into an integral ofated excitation of the trajectory over its past by the field

d—1 coordinates transverse to the orbit, for which stationary”: L ialize th | h
phase analysis is possible, followed by an integral along th% et usbnow speC|a_|ze t_es:a rehsfu s to the power spgbctrum
length of the orbit for which there is no oscillating phase and’ u(*:@) by settingx,=x,=x. In this case we get contribu-

which must be computed exactly. The result is a sum of thdions frorr_1 all traje(_:tor.ies that pass thrpugh and returs.to
form Such orbits occur in time-reversed pairs and their contribu-

tions are complex conjugates of each other. Pairing these
together in the sum we get

C. The fluctuating contribution

C(X1, Xz, @)= 2 B(Xg,Xp,0)eRr¥1%2:@)  (27)
Y

PEix,0)=2, 2|A(x,X,w)|e [Kyxxol
where y labels the trajectories from; to x, (in positive or Y
negative timgandR,(x;,X,, ) is the real part of the action. w,m (d=1)7
The amplitudeB,(X;,X,, ) is an integral over the past of Xcos{ R,(X,X,®)— ; - Q,(X,X,w).
the trajectory, involving the amplitudes of the contributing
orbits @ and B8, and a Hessian matrix of the phase. It is (30
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The prime indicates that this sum is restricted to trajectories P—(w)= P (o) TG(0)GT(w)] (34)

in positive time — the time-reversed orbits are included in ! 7 '

the argument of the sum along with them. We have alsavhich justifies the term trace formula for what follows. This
explicitly included the phase of the amplitudg(x,,X,, ) is to be compared with the Gutzwiller trace formula, in

— ., is the .Maslov index of the orbif, pomputed as if it \which the trace of5(w) rather than of3(w)G'(w) is com-
would contribute to a Green's function. In this form, y,ied. If the source power spectrum is not homogeneous,
Pu(x,®) is obviously real, as it should be. This fluctuating then invariance is lost because there are preferred coordi-
function of w is to be superimposed on the steady backngates in which to calculate its contribution, but the broad
ground represented by E(R0). . _ structure is still that of a trace formula.

As we did forP3™(x, ), let us estimate the magnitude of e first calculate the smooth part. Integrating oxgEQ.
P2 {x,w) for the special case of billiard problems. Assum- (20) for P3™(w) becomes
ing that there is no extra damping of waves from reflections
at boundaries, the estimate in E@2) should still be valid — 1
for Q,. The size ofA,, remains to be estimated. The explicit Pum(“’)_mf_lj dx dks(D(x,k,@))Q(x.k, ).
expression in Eq(D2) contains a factor that scales like an (35)
inverse rescaled group velocity1/>'<H~J/[&w/(9k]~Ufl. hi . I
There remains the determinant of a matrix that scales asis has Fhe same form as the Thomas—Ferml contribution to
the density of statefl] — an integral over the “energy
shell” v(x,k) = w in phase space with the canonical measure
ef_dxdk&(D(x,k,w)). The only difference is that, here, there
is the integrand)(x,Kk, ).

Calculation of the trace of the oscillating part by the sta-
|A|~U~Yk/L]E- 2 (31) tionary phase condition is the same as the calculation of the
L4 Gutzwiller trace formula — the stationary phase condition
restricts contributing orbits to those that are periodic, and
stationary phase calculation around each periodic orbit then
leads to a time integral around the corresponding primitive
orbit. There are three differences: orbits with negative time
contribute; there is an extra factor ofiQe Xl for each
orbit; there is a factotJ| in the amplitudeA that converts

any time integral around the orbit fromto 7. The result is
Here, |, is the geometrical length of the orbit. Comparing the following sum over periodic orbits:

with Eg. (23), we see that oscillatory contributions are
smaller than the smooth part by a factor of order

[k/L]@~Y72 whereL is a characteristic length of the system.
In two-dimensional systems, for exampleis the distance to
the nearest focal point. The amplitude therefore scales a
cording to

We find, then, that the magnitude of a typical contribution to
Po% depends o as follows:

efaly kdfl
|By|~(de—l)/2 —gzPalo)- (32)

‘DOs _ i -K
e~ “)ly[k(w)L]@ V2 Notice also that, unlike the smooth Py %w)_% {Qppe "0
part, the oscillating part of the power spectryan the cor-
relation function necessarily has an exponential dependence ! Tppo eiRoo— i p/2 (36)
on the frequency even when measurements are made in the |de(|\/|po—|)|172 '

excitation region — this exponential dependence will domi- _ _ _ _
nate the oscillating contribution when the decay lengtht ~ The term in curly brackets is what one gets in a straight trace

is smaller than typical orbit lengths. of é(w) [remember that there is a minus sign in the defini-
tion of G(w) relative to the definition of the Green’s func-
V. TRACES tion in quantum mechanics, so the factor in front jsnot

1/i]. M, is the linearized surface of section mapping around
'the orbit andu, is the Maslov index of the orbit as a peri-

tlhcularly eligﬁntéorm i vae average ﬁvg p03|.t|||on. As V‘]ﬁ'th odic orbit, not the indey , of the Green’s function. The sum
the trace of the Green's function in the Gutzwiller trace O over orbits includes reversals of orbits as well as forward

mula[1], the result is a sum over periodic orbits, each with iterations. The ternT .. is the integral ofdr, not dt, over
contribution that is canonically invariant and easy to com- I o Peo ' ’

. the primitive orbit,
pute. Let us define

The approximation to the power spectrum takes on a pa

_ T - 3@ At = 3@ dr. 37
Pu(0)= f dx Py(X,). (33) e PP

The time integral actually occurs with an argument
We will tacitly assume that the dynamics is confined to aQ(x(t).k(t),®), but we have chosen not to put this in the
bounded region in space, so that this integral makes sense.q@rly brackets to clarify the connection with the Gutzwiller
the system were unbounded, one could integrate over sorﬁé'ﬂ}ce formula.. To compensate, there is a factor
subregion and confine the contributions of classical orbits=i{Q)ppe”“»d in front, where

discussed below to those parts that lie in that subregion. If 1

the source power spectrum S homogengoug as |.n(EI)|, <Q>pp0:-|—_ § ppd TQ(X(1) K(1), ). (39
thenP,(w) can be expressed in the following invariant way: ppo
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We put a subscript ppo ofQ),,, because it does not depend equation. As long as the depth of the water is uniform, or
on how many times the periodic orbit is repeated. deep enough that takh~=1, the dispersion relation is inde-
Let us reorganize the sum as one first over the primitivependent of position and the geometrical rays are straight
periodic orbits, followed by a sum over the number of rep-lines. This is essentially the case in the experiment — varia-
etitionsr. We couple together positive and negative repeti-tion in tantkh is only significant below about 20 Hz in the

tion numbers, as in Eq30), to get power spectrum shown, and even then the depth of the water
. is uniform to within about 20% outside the jump. Therefore
pos _22 T E e IKond it is a good working assumption that the rays are in the form
o @)= 0 (Qppo ppo<y |de(Mrppo_|)|1/2 of straight lines in the interior of the system. It remains to

determine what happens to rays at the boundaries, which, in
Mppo™ the case of Fig. 1, ar@) an inner circle formed by the jump

XCO§T| Rypo= —5—] |- (39 jtself, and(b) an outer boundary imposed by placing a bar-
rier. A complete treatment of wave propagation at either of

Everything here is canonically invariant, except {@)ppo. these boundaries is forbiddingly difficult — even determin-
which singles out configuration space coordinates if théng the shape of the unperturbed flow before adding surface
source is not homogeneous. oscillations is a serious problem. We therefore adopt a sim-
We conclude this section with estimates for the relativeplified treatment. We treat the outer boundary as sharp, re-
magnitudes ofP{"(w) and PJ°{w) in the special case of flecting rays specularly with some unknown phase shift —

billiard systems. Equatio(22) still holds for PS(w), except empirically one can see that waves are reflected with little

now there is a factor o¥/, the d-dimensional volume of the {/?/sr,]s oIhampIitLide. The leJmpditseIf is_d more. pfrobledn;ati(t:r.]
system in configuration space. As 1®"(w). Eq. (23) en the spectrum is analyzed, no evidence is found for the

WOrks for (Q)ppor aNd Tppo~1 ,oo/U. Putting this together, contribution of rays that are incident on the jump. Presum-

1 . ) ably, all such rays are so long that the dissipation factor
and comparing, we see that the amplitude of a typical ConEiamps them out completely. It may also be that there is

tribution to P*{w) is of the order enhanced damping at reflection from the jump contributing
o K] L to th_eir nonappearance. In practical_ terms, we do not need a
pgSC(w)Nvaﬂ’e— ppoP ST ). (40) g;:';alled explanation of these reflections, and we do not offer
For orbits of similar length, or in regimes where damping Ir_1 a complete a_naly5|_s we WO-UId also want to knqw the
o : : Y equivalent of the dispersion functidh(x,k, ) to determine
over the length of an_or_blt is |n5|gr1|f|cant, this relative size IShow the wave couples to the source. We do not do this be-
smaller than the rati@™*»/(kL)@ 1" that we calculated ¢ ,c6 in our case the source does not have any intrinsic
for P,(x, ). Therefore, we see that integrating ovehas  eaning of its own. The model of a source forcing the wave
the effect of decreasing the importance of the OSCI||atI0n%quation was used as a simplistic replacement for the very

relative to the smooth background. complex problem of the radial flow outside the jump cou-
pling with an irregular and nonlinear flow in the jump itself.
VI. APPLICATION TO THE HYDRAULIC JUMP In a sense the source represents all the missing, but impor-

Let us show how the theory developed here can explairt\ant' terms that were excluded from the hydrodynamic equa-

the power spectrum in Fig. 1. A thorough analysis is given intions near the jump. We will satisfy ourselves with the analy-

Ref. [7], but here we will confine ourselves to the main fea_sis that can be achieved with the dispersion relation alone.
tures, to illustrate that the formulas work. The smooth part of the power spectrum is obtained by

Linear propagation of surface waves in water is a standarif/tegrating over all orbits that go directly from the jump to

problem of hydrodynamiciL2], treated by assuming that the the point of measurement. The most significant aspect of this
velocity field is derived from a potential=V¢ for which  contribution is that it will be damped at a rate®(*) where

the continuity equation reduces to Laplace’s equation, an@(®) iS the inverse decay length due to viscous dampitg
then imposing time-dependent boundary conditionspoloy (not included in the dispersion relation abpwand| is the

balancing forces at the surface. The equations are messy, Hifftance from the jump to the point of measurement. This
yield a simple dispersion relatidi2]: decay dominates the dependence of the power spectrum at

high frequencies. For the geometry considered, it is found
that there is only one orbit contributing significantly to the

ktantkh, (41)  oscillating part. This is the radial orbit that goes to the outer
boundary and is reflected straight back. The contribution of

whereh is the depth of the wateT, the surface tensiop, the  this orbit is of the form

density, andy the acceleration due to gravity. In the hydrau-

lic jump experiment we should in principle also include a

Doppler shift arising from the radial flow of the water, but Pr{w)=F(w)e” " Ucogk(w)L+6], (42

this flow velocity is always smaller than the group and phase

velocities of the waves and therefore has a small effect, so

we ignore it. wherelL/2 is the distance fromx to the outer edge; (w) is
This dispersion relation is enough to determine most ofan unknown amplitude, and an unknown phase. We have

the dynamics governing the geometrical limit of the waveseparated out the exponential decay from tefactor

2

Tk
w?= + —
g P
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200 T ———— source power spectrum, upon which are superimposed fluc-
- 1 tuations in frequency that can be related to trajectories ob-
1 tained from the geometrical limit of the wave equation.
I | The connection between the source and wave power spec-
150 L o tra was made under the assumption that spatial correlations
° 1 in the source have length scales much shorter than a wave-
@ 1 length. Using a semiclassical approximation of the Green’s
® T function, we arrived at straightforward expressions for the
® ] smooth and fluctuating parts of the wave power spectrum.
® ] The smooth part is an integral over all trajectories of a given
® ] frequency passing through the point in space where the mea-
® : surement is taken. Each trajectory donates a contrib@on
- ® T given by an integral over its past of the source power, modu-
50 o® T lated by an exponential decay arising from dissipation. The
I 4 ] fluctuating part is a discrete sum over all trajectories that
0® ] begin and end at the point of measurement. Each contributes
00° ] a term with a phase and amplitude closely related to those of
0 Lo b L L b e the Green’s function, but with an additional fac@rsimilar
0 5 10 15 20 25 30 to the term arising in the smooth part.
We also derived trace formulas that apply to an average of
n the wave power spectrum over position. These formulas are
canonically invariant, and are very similar to the Gutzwiller
FIG. 3. The frequencies at which maxima appear in the powefrace formula for the density of states in quantum mechanics.

spectrum in Fig. 1 are plotted as circles. Crosses show the peaks ¢1€ Smooth part is an integral in canonical coordinates over
Eq. (42) predicted by the dispersion relation in Ed1). The length ~ an “energy shell” in phase space, formed by fixing the fre-
used wad =8.0 cm, which is consistent with the geometry of the quency, with an excitation factd® in the integrand. The
experiment. The height effects only the lowest peaks and the avefluctuating part is a sum over all periodic orbits at the given
age experimental valueh=15 mm, was used. The phase value of frequency. The contribution of each is the same as
#=176° was chosen to fit the data. the contribution that would occur in the Gutzwiller trace for-

mula, except there is once again a factor@f this time
(e~2°"y and the decay over the orbit itselé(*%). Having  averaged over the periodic orbit.

f (Hz)

done this, the remaining amplitudé(w) should depend This picture enabled us to explain the main features of the
more weakly onw. power spectra that had been obtained in the hydraulic jump
The simplest check of the oscillating contribution is to experiment. There is one important orbit there, going radially
examine the spacind » between peaks. It is given by from the point of measurement out to the edge and back.
This produced a single sinusoidal oscillation in the power

27 dw spectrum, whose local period agreed well with the result pre-

Aw= L ke (43 dicted from the dispersion relation. We suspect that oscilla-

tions like this may appear in the power spectra of other wave

ystems. Examples are fluctuations in the electromagnetic

We immediately see now why the spacing between peaL? _ , S ;
increases as the point of measurement approaches the edfild ©f @ blackbody and in acoustic emission signals mea-
}§ured in finite systems.

(L—0). The gradual increase of the spacing with frequenc
is also simple to explain. As long as the wavelength is less
than about 2 cnfand this is usually the cagehe capillary ACKNOWLEDGMENTS

term dominates over gravity in the dispersion relation and ) )
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APPENDIX A: EXPLICIT SEMICLASSICAL
VII. CONCLUSION GREEN’'S FUNCTION

Following observation in a hydraulic jump experiment, In this appendix we will provide a detailed discussion of
we have shown that interference effects arise in a naturdhe semiclassical approximation for the Green's function
way in the power spectrum of any variable that evolves acS(X,X’,w) appearing in Eq(11), including explicit formulas
cording to a wave equation. The interference effects are evfor the amplitudesA,,(x,x’, ) etc In order to write down a
dent when the wave equation is driven by a source that itsefomplete approximation for the most general wave operator
has a power spectrum that varies smoothly over a large rang& ), the most efficient approach is to reformulate the prob-
of frequencies. In this case the power spectrum of the wavieem so that it is directly equivalent to the definition of
variable consists of a smooth background, similar to theGreen’s functions in quantum mechanics. Then the standard
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formulas derived in that context can be quoted directly.  where &',k’) are the coordinates of the initial point and
To formulate the problem in this way, we introduce an (x,k) those of the final point. We denote the time of the orbit
extra parametek, playing the role of energy, and define a by 7 in D dynamics and by in » dynamics. The subscripts
Green’s functionG(x,x’,w,\) by (x',) on the Jacobian indicate that those variables are held
_ fixed while the derivatives are taken. A detailed discussion
{IN=L(i0,V,X)}G(X,X",0,N\)=8(x—Xx").  (Al)  of the semiclassical Green’s function can be found in Ref.
[1].
We want to calculate the amplitude @&(x,x’, ), given
G(X,X' )= _’é(xixfywyo). (A2) by Aa(x,x’,w)=_—_Aa(x,x_’,z_u,0), in such a way t_ha)t dogs
not appear explicitly. This is achieved by certain manipula-
Though evaluated at=0, the semiclassical approximations tions of the Jacobian in the amplitude of E46), which we
will involve derivatives in which\ varies infinitesimally.  do not show in detail. We just quote the result:
The parametex controls the manner in which the frequency

This gives us the Green'’s function we want whe#s 0:

: ’ 1/2
® appears in the approximation. _ Aa(x,x’,w)=+_1),2|\]\]’|l/2 (M) e inml2
Insertion of an eikonal ansatz into thedependent equa- (2i) Xw) ],
tion yields a Hamilton-Jacobi equation of the form (A7)
A—D(x,k,w)=0, (A3)  The dispersion relatiom = v(x,k) is enough to determine

everything in this amplitude except the factats and J,
where the dispersion functiod(x,k,w) plays the role of a which are obtained by evaluating E@\5) at the initial and
phase-space Hamiltonian, corresponding to the operatdinal points of the trajectory, respectively. The main part of
HamiltonianZ( ). In this equationn appears as a parameter the amplitude should remain unchanged even if we consider
and does not play a dynamical role. We can invert this equavery different types of wave equations such as integral equa-
tion to write w=v(x,k,\) [in this section we find it conve- tions or equations with free boundary conditions. With the
nient to distinguish between phase space functionsassumption that the wave equation was a PDE we arrived at
D(x,k,w) andv(x,k,\), and the values they take on,and  a definite expression for the remaining Jacobians, which we
w—the distinction may be relaxed elsewhprk turns out  interpret as telling us how the source couples locally to the
that either of the two function® (x,k, w) or v(x,k,\) gives  wave field. For other types of wave equations it just remains
the same paths in phase space when used as Hamiltoniai@.calculate the analog of this coupling factor, and the rest of
However, the time incrementsr anddt respectively, pa- the calculations can then proceed in direct analogy with
rametrizing the paths are different. They are related to eacHose discussed in the main text, presumably without quali-

other by tative differences.
dr=J(x,k)dt, (Ad) APPENDIX B: IMAGINARY PART OF THE ACTION
where the Jacobial(x,k) can be calculated from one of two ~ The imaginary parK of the action of an orbit is easily
equivalent forms: treated at the level of a first order perturbation about a real
Ir(XKN) _1 orbit. The real orbit is first computed using only the real part
V L 1

of the dispersion relation. The perturbation due to the imagi-
nary part is then calculated as a special case of the following
(A5) general relationship for the variation of an action with a sys-

o o . : . . tem parameter:
This is verified by writing out Hamilton’s equations and im- P

plicitly differentiating through Eq.(A3). We are therefore IS(E;,a) JH

given a choice between describing the dynamics in terms of T ea Orbndtg- (B1)

the variables X,7) or (w,t). While the results are initially

given to us in terms ofX, 7) and indeed are most compactly HereH is any Hamiltonian depending on a parameteand

written in terms of those variables, the variablest) are  S(E;«) is the action of an orbit with enerdgg that is peri-

more physical. For example, one can often write a local disedic or has end points fixed in configuration space. An ex-

persion relationw=v(x,k) (with A\=0) more easily than plicit proof of this is given, for example, ifl3]. Applying

writing the wave equation in a form that has an obviousthis to the complex dispersion relation, we obtain the follow-

semiclassical limit, as with water waves. We will thereforeing approximate expression fé,

endeavor to quote the final results in terms @ft(), despite

the notational inconvenience. K~ _f
Now we are ready to discuss the semiclassical approxima-

tion to G(x,x’,w,\). It has the same form as E@.1), a sum

over trajectoriesx going fromx’ to x at fixed values of\

and w. The amplitude of each contributian is of the form

- 1 1 ‘ k', 7) 2 APPENDIX C: EXPLICIT CALCULATION OF  P"(xq,@q)
A (X,X,,w,)\):._ S (d—1)/2 i eil#ﬂ/z,
« i (2a) 2L axN) ]

J(X,K)=—

)N Jw

__(&D(X,k,w)
0

A= w=v(X,k)

dt Im(v), (B2)

real
orbit

where the integral is taken over the real orbit obtained by
using R¢v(x,k)] as a Hamiltonian.

In this Appendix we fill the gaps between Eq45) and
(A6)  (16), expressing the smooth part of the approximation to
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PS"(x,w) in terms of more natural variables than arise in thewhereN.. is the number of positive eigenvalues of the sym-
initial substitution of the semiclassical approximation. metric matrix 9*(R,—Rg)/dx| dx] . The next step is to

The first step is to expand the space over which integrachange the integration variable frorj to a more natural
tion takes place to include frequency and final position. Lettime variablet’.

(Xg,wq) be the particular values of the variables §) at The calculations that follow can be performed by explicit
which we want to evaluate the power spectrum. Then we camanipulation of the Jacobian and Hessian matrices as they
rearrange the measure appearing in @) as follows: appear in Eq(D1). However, much of the detail can be side-
stepped if we appeal instead to an analogy with a very simi-
, / 2 lar expression for the composition of propagators in quantum
2 | dX[AL (XX, w0)| : - L !
o mechanics, which we do in this appendix.

When the spatial arguments of the Green’s function are
, , ) restricted to(possibly distinct surfaces of section in phase
:20:‘ j dxdX dw8(X—Xo) 8(@— wo) [ A4 (X, X", )[*. space, the amplitudes and phases in the sum over orbits take
cy @ form almost exactly the same as those of a quantum propa-
gator between two different timésandt’. The amplitude for
The variables X,x’,w), along with the indexx, can be re- contribution to the Green'’s function of an orhitgoing from
garded as coordinates for thed2 1)-dimensional space of x’ in the surface of sectioR’ to x in 3 can be factored as
all possible trajectories. More natural variables for the spacéollows:
of trajectories would bex’,k’,t), the coordinates of the ini-
tial point and the time of the orbit. The amplitude terw (XX )=
|A,(x,x",»)|? above contains the Jacobian for precisely thi§ ™"
coordinate transformation, turningz,fdxdxXdw into

3y 1/2

!
X|X|

fdx’dk’dt. Taking Eq.(A7) and putting the variablg’ into 1 ok 12 a2
the Jacobian proper we get X (27i)(@- D72 E e e .
X'\X o
a(x" k', t)
' 2_ | ’ (DZ)
|Aa(X,X ,(I))| (27T)d71|JJ | (?(x’,x,w)) , , (CZ) - - . . .
X The term in curly brackets is formally identical to the ampli-

which allows us to take EqC1) one step further: tude of the contribution of an orbit to a quantum mechanical

propagatorK (x,x’,t,t")=(x|U(t,t’)[x’) in the Van Vleck
5 approximation. HereJ(t,t’) is the unitary time evolution
> | dX'|AL(Xg, X, o) gt ;
= al”0:% 0 operator from time' to timet. This analogy has been useful
in quantum theory14] and will allow us here to borrow

1 standard results for the Van Vleck formula to write an im-
:W—_lf dx' dk’ dt&(x—Xg) 8(@— wq)[IJ']. mediate expression fd.(x;,Xz, o).
(C3) The result we want to borrow is the statement that the rule

for the concatenation of time evolution operators
As mentioned in Appendix A, the presence of the Jacobians . "t
|3J’| is a penalty to be paid for using the physical variables U(tz,t) =U(tp, 1) U(1,1") (D3)

w,t) rather than the mathematically more convenient _ . TS
E)\ T)) Had we written the result in te?ms of the measurecames over to the Van Vleck approximation if we use the

Jdx'dk'dro(x—xo) 5(\), they would not be there stationary phase approximation to compound the operators,
—Xo , i o
This proves Eq(16). giving

APPENDIX D: EXPLICIT CALCULATION OF  C(X1,X,,®) K(XbxlizilktjndX’KOQ,XHQ,V)K(XLXZtLtU*-

In this Appendix we supply the calculation leading to the (D4)
expression foB,(x;,Xz,®) in Eq. (28). Let xj andx] be  The trace ovex’ here is formally identical to the trace over
the coordinates perpendicular and parallel, respectively, Q! in the calculation leading to EqD1). Except for the

the trajectory ak’. Computation of the integral in E4L3)  aqgitional terms outside curly brackets in EB2), the ma-
along thex| coordinates by the stationary phase approximanijpulation of amplitudes and phases that lead to @)

tion gives applies equally well to Eq(D1) and we can write
2\ [d=Di2 (d—1)/2 2 _ -12
B(X1,X2,0)= |_) e'N”/ZJ dx| A, (X1, X, 0) (2_77 &N+ T2 A M
i ax | Ix|,
2 —-1/2
KA (% X )| e~ Rg) /
e X w)\ = =i Az ) (DS5)

=K, (x1, X", 0)=Kg(Xs X", @) ’ . . .
xe ! e P, (X", @), Once we recognize the Jacobian for the variable change

(D1)  x{—t’, Eq.(28) follows immediately.
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